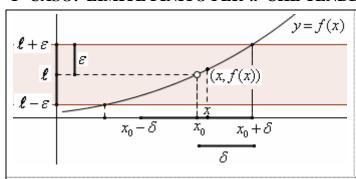
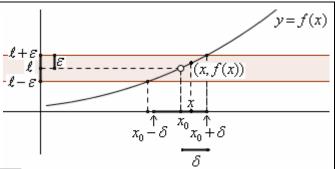
7. LA DEFINIZIONE RIGOROSA DI LIMITE

1° CASO: LIMITE FINITO PER x CHE TENDE AD UN VALORE FINITO





Definizione:

$$\left| \lim_{x \to x_0} f(x) = \ell \iff \forall \mathbf{I}_{\ell} \ \exists \mathbf{I}_{x_0} / \left(\forall x \in \mathbf{I}_{x_0} - \{x_0\}, \ f(x) \in \mathbf{I}_{\ell} \right) \right|$$

Si dice che

"il limite, per x che tende a x_0 , di f(x) è uguale a ℓ " se e solo se

per ogni intorno di ℓ , esiste un intorno di x_0 (NOTA 1) tale che, per ogni x appartenente a questo intorno (escluso tutt'al più x_0 : vedi NOTA 2),

f(x) appartenga all'intorno di ℓ fissato inizialmente.

Come abbiamo anticipato,

si riesce a giungere a una definizione soddisfacente soltanto **RIBALTANDO L'ORDINE**

in cui vengono presi in considerazione x_0 e ℓ : infatti, spontaneamente si è portati a pensare prima alla x che si avvicina a x_0 , poi alla y corrispondente che si avvicina a ℓ ; LA DEFINIZIONE RIGOROSA SI OTTIENE SE INVECE SI PENSA PRIMA A ℓ POI A x_0 : la y della funzione

si mantiene vicina a ℓ tanto quanto lo si desidera, a patto di prendere x sufficientemente vicina a x_0 .

$$\lim_{x \to x_0} f(x) = \ell \iff \forall \varepsilon > 0 \; \exists \delta > 0 \; / \; (\forall x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}, \; f(x) \in (\ell - \varepsilon, \; \ell + \varepsilon))$$

Si dice che "il limite, per x che tende a x_0 , di f(x) è uguale a ℓ " se e solo se: per ogni $\varepsilon > 0$ (comunque piccolo si prenda quell' ε) esiste un $\delta > 0$ (NOTA 3) tale che, per ogni x appartenente all'intervallo $(x_0 - \delta, x_0 + \delta)$ (escluso tutt'al più x_0 : NOTA 2),

f(x) appartenga all'intervallo $(\ell - \varepsilon, \ell + \varepsilon)$

$$\lim_{x \to x_0} f(x) = \ell \iff \forall \varepsilon > 0 \; \exists \delta > 0 \; / \; \left(x_0 - \delta < x < x_0 + \delta \land x \neq x_0 \Rightarrow \ell - \varepsilon < f(x) < \ell + \varepsilon \right)$$

Si dice che "il limite, per x che tende a x_0 , di f(x) è uguale a ℓ " se e solo se: per ogni $\varepsilon > 0$ (arbitrariamente piccolo) esiste un $\delta > 0$ (NOTA 3) tale che, se x è compreso fra $x_0 - \delta$ e $x_0 + \delta$ (escluso tutt'al più x_0 : NOTA 2), f(x) risulti compreso fra $\ell - \varepsilon$ ed $\ell + \varepsilon$

Oppure:

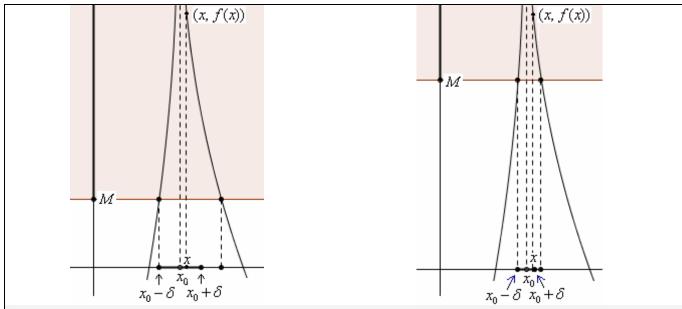
$$\lim_{x \to x_0} f(x) = \ell \iff \forall \varepsilon > 0 \; \exists \delta > 0 \; / \left(|x - x_0| < \delta \land x \neq x_0 \Rightarrow |f(x) - \ell| < \varepsilon \right)$$

Si dice che "il limite, per x che tende a x_0 , di f(x) è uguale a ℓ " se e solo se: per ogni $\varepsilon > 0$ (piccolo a piacere) esiste un $\delta > 0$ (NOTA 3) tale che, se la distanza di x da x_0 è minore di δ (e x è diverso da x_0 : NOTA 2), la distanza di f(x) da ℓ risulti minore di ε (vedi a questo punto NOTA 4)

- **NOTA 1** Questo intorno di x_0 dipende, di norma, dall'intorno di ℓ , nel senso che è tanto più piccolo, quanto più piccolo è I_{ℓ}
- **NOTA 2** Abbiamo già osservato, presentando dal punto di vista intuitivo il concetto di limite, come, quando pensiamo a x tendente a x_0 , non ci interessa cosa accade IN x_0 (dove, eventualmente, la funzione potrebbe addirittura non essere definita), ma solo cosa accade "in prossimità", diciamo così, di x_0
- NOTA 3 Questo δ dipende, di norma, da ε , nel senso che è tanto più piccolo, quanto più piccolo è ε . Per indicare questa dipendenza di δ da ε , si usa a volte la notazione funzionale $\delta = \delta(\varepsilon)$ (δ uguale δ di ε , ossia: il δ è un δ che dipende da ε)

NOTA 4 Le quattro definizioni alternative di limite, che abbiamo proposto, sono tutte equivalenti fra loro. Ciò è subito evidente se si conviene che gli intorni menzionati nella prima delle quattro definizioni siano circolari; ma poi un'analisi attenta permette di stabilire che nella prima definizione data è del tutto indifferente "leggere" gli intorni in questione come intorni "circolari" o invece "generici". Ciò si deve al fatto che ogni intorno I di un punto (= intervallo aperto contenente quel punto) contiene un intorno CIRCOLARE del punto stesso (anzi, ne contiene infiniti: tutti quelli il cui raggio è minore o uguale della più piccola fra le distanze del punto considerato, dalle estremità dell'intorno I)

2° CASO: LIMITE INFINITO $(+\infty)$ PER x CHE TENDE AD UN VALORE FINITO (analoga sarebbe la definizione per il limite $-\infty$)



Definizione:
$$\lim_{x \to x_0} f(x) = +\infty \iff \forall I_{+\infty} \exists I_{x_0} / \left(\forall x \in I_{x_0} - \{x_0\}, \ f(x) \in I_{+\infty} \right)$$

Si dice che "il limite, per x che tende a x_0 , di f(x) è uguale a $+\infty$ " se e solo se per ogni intorno di $+\infty$, esiste un intorno di x_0 tale che, per ogni x appartenente a questo intorno di x_0 (escluso tutt'al più x_0), f(x) appartenga all'intorno di $+\infty$ fissato inizialmente

Oppure:
$$\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0 \; \exists \; \delta > 0 \; / \; \left(\forall x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}, \; f(x) \in (M, +\infty) \right)$$

Si dice che "il limite, per x che tende a x_0 , di f(x) è uguale a $+\infty$ " se e solo se per ogni M>0 (arbitrariamente grande) esiste un $\delta>0$ tale che, per ogni x appartenente all' intervallo $(x_0-\delta, x_0+\delta)$ (escluso tutt'al più x_0), f(x) appartenga all'intervallo $(M, +\infty)$

Oppure:
$$\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0 \; \exists \; \delta > 0 \; / \; \left(x_0 - \delta < x < x_0 + \delta \land x \neq x_0 \implies f(x) > M \right)$$

Si dice che "il limite, per x che tende a x_0 , di f(x) è uguale a $+\infty$ " se e solo se per ogni M>0 (comunque grande lo si scelga) esiste un $\delta>0$ tale che, se x è compreso fra $x_0-\delta$ e $x_0+\delta$ (escluso tutt'al più x_0), f(x) risulti maggiore di M

Oppure:
$$\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0 \; \exists \; \delta > 0 \; / \; \left(\left| x - x_0 \right| < \delta \land x \neq x_0 \Longrightarrow f(x) > M \right)$$

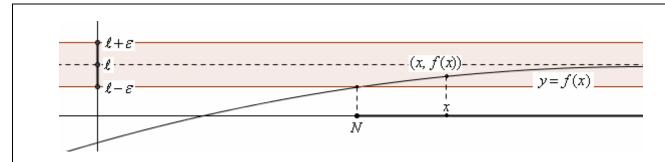
Si dice che "il limite, per x che tende a x_0 , di f(x) è uguale a $+\infty$ " se e solo se: per ogni M>0 (grande a piacere) esiste un $\delta>0$ tale che, se la distanza di x da x_0 è minore di δ (e x è diverso da x_0 : il comportamento della funzione IN x_0 non ci interessa), f(x) risulti maggiore di M

Osservazione sulle definizioni di questa pagina

L'intorno di x_0 di cui si parla dipende dall'intorno di $+\infty$ che viene menzionato precedentemente: insomma, si ha $\delta = \delta(M)$ e, quanto più si prende grande M, tanto più, di norma, occorrerà prendere piccolo δ .

3° CASO: LIMITE FINITO PER x CHE TENDE A INFINITO $(+\infty)$

(analoga sarebbe la definizione se il limite fosse $-\infty$)



Definizione:
$$\lim_{x \to +\infty} f(x) = \ell \iff \forall I_{\ell} \exists I_{+\infty} / \left(\forall x \in I_{+\infty}, \ f(x) \in I_{\ell} \right)$$

Si dice che "il limite, per x che tende a $+\infty$, di f(x) è uguale a ℓ " se e solo se

per ogni intorno di ℓ , esiste un intorno di $+\infty$ tale che, per ogni x appartenente a questo intorno di $+\infty$, f(x) appartenga all'intorno di ℓ fissato inizialmente.

Oppure:
$$\lim_{x \to +\infty} f(x) = \ell \iff \forall \varepsilon > 0 \ \exists N > 0 \ / \ (\forall x \in (N, +\infty), \ f(x) \in (\ell - \varepsilon, \ell + \varepsilon))$$

Si dice che "il limite, per x che tende a $+\infty$, di f(x) è uguale a ℓ " se e solo se

per ogni $\varepsilon > 0$ (piccolo a piacere) esiste un N > 0 tale che, per ogni x appartenente all'intervallo $(N, +\infty)$, f(x) appartenga all'intervallo $(\ell - \varepsilon, \ell + \varepsilon)$

Oppure:
$$\lim_{x \to +\infty} f(x) = \ell \iff \forall \varepsilon > 0 \ \exists N > 0 \ / \ (x > N \implies \ell - \varepsilon < f(x) < \ell + \varepsilon \ o \ anche \ |f(x) - \ell| < \varepsilon)$$

Si dice che "il limite, per x che tende a $+\infty$, di f(x) è uguale a ℓ " se e solo se

per ogni $\varepsilon > 0$ (arbitrariamente piccolo) esiste un N > 0 tale che,

se x è maggiore di N, f(x) risulti compreso fra $\ell - \varepsilon$ ed $\ell + \varepsilon$ (= la distanza di f(x) da ℓ sia minore di ε)

Osservazione sulle definizioni di questa pagina

L'intorno di $+\infty$ di cui si parla dipende dall'intorno di ℓ che viene menzionato precedentemente: insomma, è $N = N(\varepsilon)$

"N uguale N di ε , cioè: questo-N-è-un-N-che-dipende-da- ε " e quanto più si prende piccolo ε , tanto più, in generale, occorrerà prendere grande N.

COME PUOI VEDERE, SI PARTE SEMPRE DALLA STESSA "DEFINIZIONE-BASE":

« Si dice che "il limite, per x che tende a c, di f(x) è uguale a ℓ " e si scrive

 $\lim f(x) = \ell$

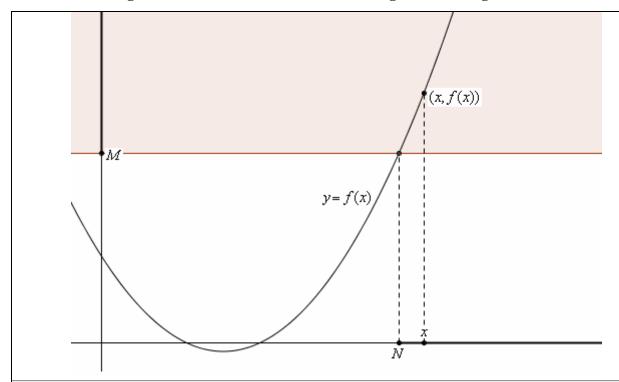
se e solo se

per ogni intorno di ℓ , esiste un intorno di ctale che, per ogni x appartenente a questo intorno (con esclusione tutt'al più di c, nel caso c sia un'ascissa finita), f(x) appartenga all'intorno di ℓ fissato all'inizio ».

Si formulano successivamente le particolarizzazioni di questa definizione ai vari casi.

Se c è un'ascissa finita x_0 , l'intorno di c di cui si parla è un intervallo aperto contenente $c = x_0$ e, siccome tale intorno può essere supposto circolare, finisce per essere definito dal suo raggio ε ; se invece è $c = +\infty$, l'intorno di c è costituito da tutti i punti di ascissa > di un certo numero N; analogamente per l'intorno di ℓ

4° CASO: LIMITE INFINITO $(+\infty)$ PER x CHE TENDE A INFINITO $(+\infty)$ (analoghe sarebbero le def. se cambiasse il segno di uno degli infiniti o di entrambi)



Definizione:
$$\lim_{x \to +\infty} f(x) = +\infty \iff \forall \mathbf{I}_{+\infty} \ \exists \mathbf{I'}_{+\infty} \ / \left(\forall x \in \mathbf{I'}_{+\infty}, \ f(x) \in \mathbf{I}_{+\infty} \right)$$

Si dice che "il limite, per x che tende a $+\infty$, di f(x) è uguale a $+\infty$ " se e solo se per ogni intorno I di $+\infty$ (pensato sull'asse delle ordinate), esiste un altro intorno I' di $+\infty$ (pensato, questa volta, sull'asse delle ascisse), tale che, per ogni x appartenente a quest'ultimo intorno $I'_{+\infty}$, f(x) appartenga all'intorno di $+\infty$ fissato inizialmente.

Oppure:
$$\lim_{x \to +\infty} f(x) = +\infty \iff \forall M > 0 \ \exists N > 0 \ / \left(\forall x \in (N, +\infty), \ f(x) \in (M, +\infty) \right)$$

Si dice che "il limite, per x che tende a $+\infty$, di f(x) è uguale a $+\infty$ " se e solo se: per ogni M>0 (arbitrariamente grande) esiste un N>0 tale che, per ogni x appartenente all'intervallo $(N,+\infty)$, f(x) appartenga all'intervallo $(M,+\infty)$

Oppure:
$$\lim_{x \to +\infty} f(x) = +\infty \iff \forall M > 0 \exists N > 0 / (x > N \Rightarrow f(x) > M)$$

Si dice che "il limite, per x che tende a $+\infty$, di f(x) è uguale a $+\infty$ " se e solo se: per ogni M > 0 (grande quanto si vuole), esiste un N > 0 tale che, se x è maggiore di N, f(x) risulti maggiore di M.

Osservazione sulle definizioni di questa pagina

Il secondo intorno cui fa riferimento la definizione dipende dal primo: N=N(M), vale a dire N è un "N di M", ossia dipende da M; e quanto più si prende grande M, tanto più, di norma, saremo costretti a prendere grande anche N.

DEFINIZIONI DI LIMITE: CHE MODIFICHE SUBISCONO QUANDO COMPARE -∞

OSSERVAZIONE FONDAMENTALE (l'abbiamo già fatta in precedenza ... la ripetiamo)

LE DEFINIZIONI DI LIMITE NEI QUATTRO CASI,

quando vengono date nella forma più generale, si possono tutte pensare come PARTICOLARIZZAZIONI della DEFINIZIONE ASTRATTA seguente:

$$\lim_{x \to c} f(x) = \ell \iff \forall I_{\ell} \exists I_{c} / (\forall x \in I_{c} - \{c\}, f(x) \in I_{\ell})$$

dove ciascuno dei due simboli ℓ , c potrà rappresentare, a seconda dei casi, un valore finito, oppure $+\infty$, oppure ancora $-\infty$ (e, nel caso c valga $+\infty$ o $-\infty$, la specificazione " $-\{c\}$ " va, ovviamente, tralasciata).

Questa importantissima osservazione consentirà immediatamente di scrivere le definizioni di limite nel caso in cui ℓ , c o entrambi valgano $-\infty$.

Sarà poi immediato tradurre la definizione in forma "numerica",

riflettendo sulla analogia/differenza fra "intorno di $+\infty$ " e "intorno di $-\infty$ ".

Intertendo sulla analogia/differenza fra "informo di
$$+\infty$$
" e "informo di $-\infty$ ".

$$\lim_{x \to x_0} f(x) = -\infty \iff \forall I_{-\infty} \exists I_{x_0} / \left(\forall x \in I_{x_0} - \{x_0\}, \ f(x) \in I_{-\infty} \right)$$

$$\lim_{x \to x_0} f(x) = -\infty \iff \forall M > 0 \ \exists \delta > 0 / \left(|x - x_0| < \delta \land x \neq x_0 \implies f(x) < -M \right)$$

$$\lim_{x \to -\infty} f(x) = \ell \iff \forall I_{\ell} \exists I_{-\infty} / \left(\forall x \in I_{-\infty}, \ f(x) \in I_{\ell} \right)$$

$$\lim_{x \to -\infty} f(x) = \ell \iff \forall E > 0 \ \exists N > 0 / \left(x < -N \implies |f(x) - \ell| < \varepsilon \right)$$

$$\lim_{x \to -\infty} f(x) = +\infty \iff \forall I_{+\infty} \exists I_{-\infty} / \left(\forall x \in I_{-\infty}, \ f(x) \in I_{+\infty} \right)$$

$$\lim_{x \to +\infty} f(x) = +\infty \iff \forall I_{-\infty} \exists I_{+\infty} / \left(\forall x \in I_{+\infty}, \ f(x) \in I_{-\infty} \right)$$

$$\lim_{x \to +\infty} f(x) = -\infty \iff \forall I_{-\infty} \exists I_{-\infty} / \left(\forall x \in I_{+\infty}, \ f(x) \in I_{-\infty} \right)$$

$$\lim_{x \to +\infty} f(x) = -\infty \iff \forall I_{-\infty} \exists I_{-\infty} / \left(\forall x \in I_{-\infty}, \ f(x) \in I_{-\infty} \right)$$

$$\lim_{x \to +\infty} f(x) = -\infty \iff \forall I_{-\infty} \exists I_{-\infty} / \left(\forall x \in I_{-\infty}, \ f(x) \in I_{-\infty} \right)$$

$$\lim_{x \to +\infty} f(x) = -\infty \iff \forall I_{-\infty} \exists I_{-\infty} / \left(\forall x \in I_{-\infty}, \ f(x) \in I_{-\infty} \right)$$

$$\lim_{x \to +\infty} f(x) = -\infty \iff \forall I_{-\infty} \exists I_{-\infty} / \left(\forall x \in I_{-\infty}, \ f(x) \in I_{-\infty} \right)$$

$$\lim_{x \to +\infty} f(x) = -\infty \iff \forall I_{-\infty} \exists I_{-\infty} / \left(\forall x \in I_{-\infty}, \ f(x) \in I_{-\infty} \right)$$

DEFINIZIONI DI LIMITE:

- "LIMITE UGUALE A ∞ (SENZA ALCUN SEGNO)",
- "LIMITE PER x CHE TENDE A ∞ (SENZA ALCUN SEGNO)"

Limite uguale a ∞ (senza alcun segno)

$$\lim_{x \to c} f(x) = \infty \iff \forall I_{\infty} \exists I_{c} / (\forall x \in I_{c} - \{c\}, f(x) \in I_{\infty}) ,$$

dove il simbolo c potrà valere, a seconda dei casi, x_0 (ascissa finita) oppure $+\infty$ oppure ancora $-\infty$ (e, nel caso c valga $+\infty$ o $-\infty$, la specificazione " $-\{c\}$ " va, ovviamente, tralasciata).

Un "intorno di ∞ " è un'unione di intervalli del tipo $(-\infty, a) \cup (b, +\infty) = \{x \in \mathbb{R} \mid x < a \lor x > b\}$.

Un "intorno circolare di ∞ " è della forma $(-\infty, -k) \cup (k, +\infty)$ o anche $\{x \in \mathbb{R} / |x| > k\}$.

Ad es., se c è un'ascissa finita ($c = x_0$), la definizione generale nel riquadro può essere riscritta come segue:

$$\lim_{x \to x_0} f(x) = \infty \quad \stackrel{def.}{\Leftrightarrow} \quad \forall M > 0 \ \exists \delta > 0 \ / \ \left(\left| x - x_0 \right| < \delta \land x \neq x_0 \ \Rightarrow \ \left| f(x) \right| > M \right)$$

Alcune osservazioni sulla scrittura $\lim_{x \to c} f(x) = \infty$:

- a) essa si può dimostrare equivalente alla scrittura $\left| \frac{\lim_{x \to c} |f(x)| = +\infty}{|x|} \right|$;
- b) essa è usata, nella quasi totalità dei casi, più che altro come scrittura "provvisoria",
 in attesa di decidere se, più precisamente, il limite è +∞ o -∞;
 spesso, a tale scopo, è necessario passare a considerare separatamente il limite sinistro e il limite destro (dei quali ci siamo già occupati a livello intuitivo, e la cui definizione rigorosa formuleremo più avanti).
- c) Se risulta $\lim_{x \to c} f(x) = -\infty$ oppure $\lim_{x \to c} f(x) = +\infty$, allora è anche corretto scrivere $\lim_{x \to c} f(x) = \infty$ (seppure quest'ultima scrittura sia meno precisa)

Limite per x che tende a ∞ (senza alcun segno)

$$\lim_{x \to \infty} f(x) = \ell \iff \forall \mathbf{I}_{\ell} \exists \mathbf{I}_{\infty} / (\forall x \in \mathbf{I}_{\infty}, f(x) \in \mathbf{I}_{\ell})$$

dove, per la definizione di "intorno di ∞ ", ti rimando al riquadro precedente. ℓ potrà essere un'ordinata finita, oppure uno dei due simboli $+\infty$ o $-\infty$.

Ad esempio, se ℓ è un'ordinata finita ($\ell \in \mathbb{R}$) avremo:

$$\lim_{x \to \infty} f(x) = \ell \in \mathbb{R} \iff \forall \varepsilon > 0 \ \exists N > 0 / \left(|x| > N \implies \left| f(x) - \ell \right| < \varepsilon \right)$$

Tuttavia, la scrittura

$$\lim_{x \to \infty} f(x) = \ell$$

è usata, più che altro, per sintetizzare la congiunzione

$$\lim_{x \to -\infty} f(x) = \ell \wedge \lim_{x \to +\infty} f(x) = \ell$$

alla quale si può dimostrare equivalente.

Si può infine utilizzare anche la scrittura $\lim_{x\to\infty} f(x) = \infty$, che a questo punto è di ovvia interpretazione.

DEFINIZIONI DI LIMITE: LIMITE SINISTRO, LIMITE DESTRO

Limite sinistro

$$\lim_{x \to x_0^-} f(x) = \ell \Leftrightarrow \forall \mathbf{I}_{\ell} \exists \mathbf{I}_{x_0}^- / (\forall x \in \mathbf{I}_{x_0}^- - \{x_0\}, f(x) \in \mathbf{I}_{\ell})$$

dove il simbolo $I_{x_0}^-$ indica un intorno sinistro di x_0 . ℓ potrà essere, a seconda dei casi,

- un' ordinata finita,
- oppure uno dei due simboli: $+\infty$ o $-\infty$.

Più "numericamente", scriveremo ad esempio:

$$\lim_{x \to x_0^-} f(x) = \ell \iff$$

$$\Leftrightarrow \forall \mathbf{I}_{\ell} \exists \delta > 0 / (\forall x \in (x_0 - \delta, x_0), f(x) \in \mathbf{I}_{\ell})$$

imita dastra

$$\lim_{x \to x_0^+} f(x) = \ell \Leftrightarrow \forall \mathbf{I}_{\ell} \exists \mathbf{I}_{x_0}^+ / (\forall x \in \mathbf{I}_{x_0}^+ - \{x_0\}, f(x) \in \mathbf{I}_{\ell})$$

dove il simbolo $I_{x_0}^+$ indica un intorno destro di x_0 . ℓ potrà essere, a seconda dei casi,

- un' ordinata finita,
- oppure uno dei due simboli: $+\infty$ o $-\infty$.

Più "numericamente", scriveremo ad esempio:

$$\lim_{x \to x_0^+} f(x) = \ell \Leftrightarrow def.$$

$$\Leftrightarrow \forall I_{\ell} \exists \delta > 0 / (\forall x \in (x_0, x_0 + \delta), f(x) \in I_{\ell})$$

E' facile dimostrare, e importante tener presente, che UN LIMITE "BILATERALE" ESISTE SE E SOLO SE ESISTONO SIA IL LIMITE SINISTRO CHE IL DESTRO, E SONO UGUALI FRA LORO

$$\exists \lim_{x \to x_0} f(x) = \ell \Leftrightarrow \exists \lim_{x \to x_0^-} f(x) = \ell \land \exists \lim_{x \to x_0^+} f(x) = \ell$$