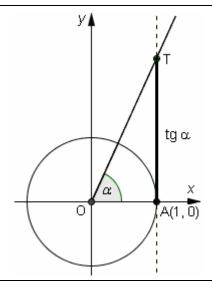
4. TANGENTE DI UN ANGOLO NELLA CIRCONFERENZA GONIOMETRICA

Nella circonferenza goniometrica, consideriamo il punto A che sta "all'estrema destra", di coordinate (1,0). Per A tracciamo la retta "verticale", ossia quella parallela all'asse y,

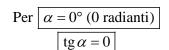
e indichiamo con T il punto di intersezione fra tale retta e il raggio vettore di un dato angolo α (o, eventualmente, il prolungamento del raggio vettore dalla parte dell'origine).

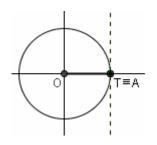
Si dice "tangente di α " l'ordinata del punto T, ossia la misura (con segno) del segmento AT in figura.

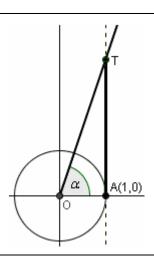


$tg \alpha = ordinata di T = misura (con segno) di AT$

Clicca QUI per una bella figura dinamica (software GeoGebra) che ti permetterà di osservare la variazione della tangente goniometrica al variare dell'angolo.



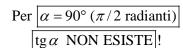


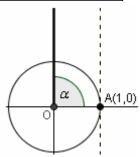


Nel
$$1^{\circ}$$
 quadrante, ossia per $0^{\circ} < \alpha < 90^{\circ} \left(0 < \alpha < \frac{\pi}{2}\right)$, si ha $\left[\operatorname{tg} \alpha > 0\right]$

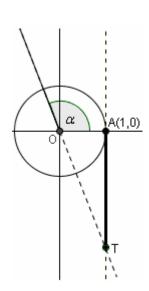
... e quando α si avvicina a 90°, mantenendosi però *minore* di 90°, tg α diventa altissima, "tende a $+\infty$ ".

Ad esempio, si ha tg 89.97° ≈ 1909.86





Il raggio vettore, ossia
il secondo lato dell'angolo,
in questo caso coincide col
semiasse delle ordinate positive.
Ma allora il punto T "non si trova",
perché il raggio vettore
e la retta tratteggiata
sono parallele
e quindi non si incontrano.

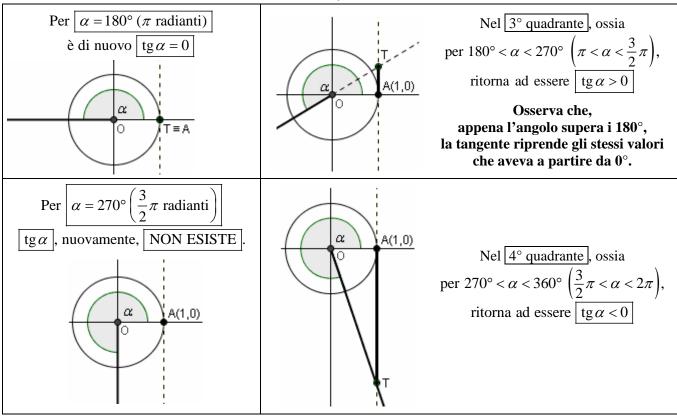


Nel
$$2^{\circ}$$
 quadrante, ossia per $90^{\circ} < \alpha < 180^{\circ} \left(\frac{\pi}{2} < \alpha < \pi\right)$, si ha $\left[\operatorname{tg}\alpha < 0\right]$

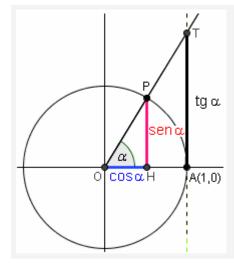
Il raggio vettore è una semiretta immersa nel 2° quadrante, ma la definizione di tangente goniometrica prevede che si debba sempre considerare l'intersezione fra la retta verticale per A e il raggio vettore o, eventualmente (come in questo caso), il suo prolungamento.

Quando α si avvicina a 90°, mantenendosi però *maggiore* di 90° (ossia: decrescendo), tg α diventa altissima in valore assoluto, ma negativa in segno: si dice che "tende a $-\infty$ "

Ad es., si ha tg $90.01^{\circ} \approx -5729.58$



Quando l'angolo α raggiunge e poi supera i 360°, i valori della tangente "ripartono come se si ripartisse da 0°". Ma in fondo vediamo che questo "ricominciare da capo" si ha già quando l'angolo raggiunge e poi supera **180**°! Insomma, **la funzione "tangente" è "periodica di periodo 180**°"; di questo torneremo a parlare più avanti.



La figura qui a fianco mostra $AT = tg\,\alpha\;,\; HP = sen\,\alpha\;,\; OH = cos\,\alpha\;.$ I due triangoli OAT, OHP sono simili (sono entrambi rettangoli, hanno l'angolo α in comune e i due angoli acuti di vertici T e P uguali per differenza rispetto a 180°). Perciò vale la proporzione AT : OA = HP : OH la quale si può riscrivere come

Due triangoli con gli angoli rispettivamente uguali sono detti "simili", e hanno anche i lati in proporzione. Breve spiegazione se volti la pagina.

 $tg \alpha : 1 = sen \alpha : cos \alpha$ ossia

 $tg \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha}$

L'uguaglianza nel riquadro prende il nome di

2ª RELAZIONE FONDAMENTALE DELLA GONIOMETRIA.

Possiamo a questo punto osservare che la 2ª rel. fondamentale della goniometria è coerente col fatto che

- □ la tangente vale 0 per tutti e soli quegli angoli il cui seno è 0, che sono poi: 0° , 180° , 360° e, andando fuori dai confini del 1° giro, $360^{\circ} + 180^{\circ} = 540^{\circ}$, $540^{\circ} + 180^{\circ} = 720^{\circ}$, ...; -180° , -360° , ...; più in generale, dunque: per tutti gli angoli che si possono scrivere sotto la forma $k \cdot 180^{\circ}$, essendo k un intero relativo ($k \in \mathbb{Z}$);
- □ la tangente non esiste ("va all'infinito") per tutti e soli quegli angoli il cui coseno è 0 cioè 90°, 270° e, andando fuori dai confini del 1° giro, $270^{\circ} + 180^{\circ} = 450^{\circ}$, $450^{\circ} + 180^{\circ} = 630^{\circ}$, ...; -90° , -270° , ... più in generale, dunque: per tutti gli angoli che si possono scrivere sotto la forma $90^{\circ} + k \cdot 180^{\circ}$, essendo k un intero relativo ($k \in \mathbb{Z}$)

IL TENDERE A INFINITO. Dire, ad es., che la tangente "va all'infinito a 90° ", significa affermare che quando l'angolo si fa molto vicino a 90° , la rispettiva tangente diventa grandissima in valore assoluto:

- per un angolo di pochissimo inferiore a 90°, ossia quando l'angolo tende a 90° "per difetto" (1° quadrante), la tangente è grandissima in valore assoluto e positiva ("tende a $+\infty$ ")
- mentre per un angolo appena superiore a 90°, ossia quando l'angolo tende a 90° "per eccesso" (2° quadrante), la tangente è grandissima in valore assoluto e negativa ("tende a $-\infty$ ").