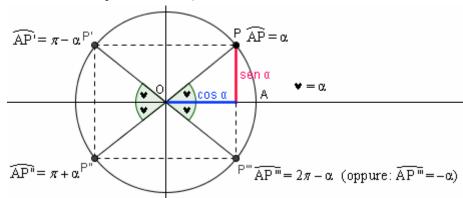
18. ARCHI ASSOCIATI

Sia $\alpha = \widehat{AP}$ un arco. Consideriamo il rettangolo avente per vertici i 4 punti:

- P' (simmetrico di P rispetto all'asse y)
- P" (simmetrico di P rispetto all'origine)
- P''' (simmetrico di P rispetto all'asse x)



Gli archi $\widehat{AP} = \alpha$ $\widehat{AP'} = \pi - \alpha$ $\widehat{AP''} = \pi + \alpha$ $\widehat{AP'''} = 2\pi - \alpha$ (oppure: $\widehat{AP'''} = -\alpha$) sono detti "archi associati".

Per due archi associati, tutte e quattro le funzioni goniometriche (seno, coseno, tangente, cotangente) hanno lo stesso valore assoluto, anche se possono differire in segno: lo si desume facilissimamente dall'osservazione della figura (tangente e cotangente sono lasciati all'immaginazione del lettore).

Sussistono le seguenti formule:

 $sen(\pi - \alpha) = sen \alpha$ Due archi supplementari hanno ugual seno ...

 $\cos(\pi - \alpha) = -\cos\alpha$... e coseni opposti

 $tg(\pi - \alpha) = -tg\alpha$

 $\cot g(\pi - \alpha) = -\cot g \alpha$

 $sen(\alpha + \pi) = -sen \alpha$ Due archi che differiscono di π hanno seni opposti...

 $cos(\alpha + \pi) = -cos\alpha$... e coseni pure opposti

 $tg(\alpha + \pi) = tg\alpha$

 $\cot g(\alpha + \pi) = \cot g \alpha$

Siccome $\alpha - \pi$ differisce di 1 giro $(2\pi, \operatorname{cioe} 360^\circ)$ da $\alpha + \pi$,

le funzioni goniometriche di $\alpha - \pi$ coincideranno con quelle di $\alpha + \pi$ e perciò sarà pure :

 $sen(\alpha - \pi) = -sen \alpha$

 $\cos(\alpha - \pi) = -\cos\alpha$

 $tg(\alpha - \pi) = tg\alpha$

 $\cot \alpha (\alpha - \pi) = \cot \alpha$

 $sen(2\pi - \alpha) = -sen \alpha$ Due archi esplementari hanno seni opposti ...

 $cos(2\pi - \alpha) = cos \alpha$... ed ugual coseno

 $tg(2\pi - \alpha) = -tg\alpha$

 $\cot g(2\pi - \alpha) = -\cot g\alpha$

e perciò anche

 $sen(-\alpha) = -sen \alpha$ Due archi opposti hanno seni opposti ...

 $cos(-\alpha) = cos \alpha$... ed ugual coseno

 $tg(-\alpha) = -tg\alpha$

 $\cot g(-\alpha) = -\cot g\alpha$

Le ultime 4 formule ci dicono che il coseno è una funzione PARI:

f(-x) = f(x)mentre il seno, la tg e la cotg sono funzioni DISPARI:

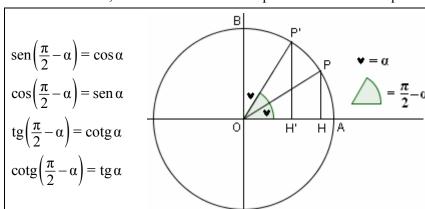
f(-x) = -f(x)

OSSERVAZIONI

- □ Le formule scritte sopra (coi relativi "riassuntini") non han bisogno di essere studiate a memoria! Infatti esse possono essere ricostruite in qualsiasi momento semplicemente visualizzando con gli occhi della mente la circonferenza goniometrica
- □ Le formule riguardanti tg e cotg possono essere ricavate completando i disegni, o anche dividendo membro a membro le due formule per il seno e per il coseno (2^a e 3^a Relazione Fondamentale della Trigonometria)
- \square Si può verificare che le formule viste, ricavate con riferimento ad una figura in cui l'angolo α era compreso fra 0 e $\pi/2$, varrebbero per qualunque valore di α (anche maggiore di 2π , anche negativo), con le sole eccezioni, per le formule relative a tg e cotg, degli archi per i quali queste non esistono
- Per via della periodicità, le frasette riassuntive restano vere anche qualora noi diamo alla locuzione "archi supplementari" il senso "esteso" di "archi che danno per somma π a meno di un numero intero di giri completi" (insomma: "due archi sono supplementari in senso esteso" se la loro somma è $\pi + 2k\pi$, per un $k \in \mathbb{Z}$) e diamo alla locuzione "archi che differiscono di π " il senso esteso di "archi che differiscono di π a meno di interi giri", ecc.

19. ARCHI COMPLEMENTARI

Come è ben noto, due archi si dicono "complementari" se danno per somma $\pi/2$ (90°). La figura mostra che



Ho preso $\hat{AOP} = \alpha$, poi $\hat{BOP}' = \alpha$ e quindi ho ottenuto $\hat{AOP}' = \frac{\pi}{2} - \alpha$.

E' facile dimostrare che i due triangoli POH e P'OH' sono uguali (2° Criterio di Uguaglianza). Quindi

HP = OH'
$$\rightarrow$$
 sen $\alpha = \cos\left(\frac{\pi}{2} - \alpha\right)$
OH = H'P' \rightarrow cos $\alpha = \sin\left(\frac{\pi}{2} - \alpha\right)$

Le ultime due formule sono ricavabili completando il disegno, oppure dividendo le precedenti membro a membro.

ossia: se si passa da un arco al suo complementare,

il seno si muta nel coseno e viceversa, la tangente si muta nella cotangente e viceversa; in breve, ogni "funzione" si muta nella corrispondente "co-funzione".

OSSERVAZIONI

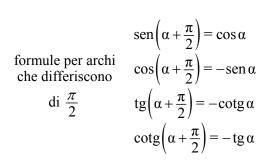
Le formule appena stabilite sono state dimostrate con riferimento al caso 0 < α < π/2, ma se ne potrebbe provare la validità in generale, cioè per un arco α qualsiasi, anche con l'estremo appartenente agli altri tre quadranti, anche maggiore di un giro oppure negativo. E' estremamente frequente, in goniometria, incontrare situazioni di questo tipo.
 La generalizzazione di una formula ricavata con riferimento ad un arco del 1° quadrante si effettua prendendo in considerazione altri casi, ma comunque soprattutto servendosi di ragionamenti di vario tipo o sfruttando formule precedentemente acquisite; solitamente, per ragioni di brevità, tali riflessioni aggiuntive non sono riportate sui libri di testo in modo esplicito.

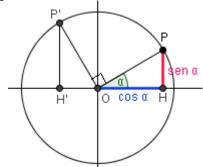
Con ciò NON voglio dire che *ogni* formula ricavata per un arco del primo quadrante debba per forza sempre essere valida per un arco qualsiasi; voglio solo dire che capiterà di scrivere una certa formula da dimostrare, di vederne la dimostrazione con riferimento ad un arco del primo quadrante e di omettere, per brevità, quelle considerazioni che porterebbero ad estendere la validità della formula anche agli archi che superano i 90° oppure sono negativi.

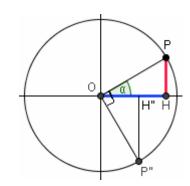
Per via della periodicità, lo slogan secondo cui quando da un arco si passa al complementare ogni "funzione" si muta nella corrispondente "co-funzione" continua a valere anche se si dà alla locuzione "archi complementari" il senso esteso di "archi che sono complementari meno di interi giri", ossia, che danno per somma $\pi/2$, eventualmente aumentato o diminuito di un multiplo di 2π .

20. ARCHI CHE DIFFERISCONO DI $\frac{\pi}{2}$ O DI $\frac{3}{2}\pi$

Osservando le figure, si possono ricavare le seguenti formule:







21. RIDUZIONE AL PRIMO QUADRANTE E POI, EVENTUALMENTE, AL PRIMO OTTANTE

Consideriamo i seguenti esempi

(nei quali abbiamo deciso di utilizzare i gradi, anziché i radianti, per ragioni di comodità e di migliore comprensibilità):

$$sen 460^\circ = sen (460^\circ - 360^\circ) = sen 100^\circ = sen (180^\circ - 100^\circ) = sen 80^\circ$$

 $sen 200^\circ = -sen (200^\circ - 180^\circ) = -sen 20^\circ$

Essi ci suggeriscono come, di fronte al seno di un angolo qualsiasi, si abbia sempre la possibilità di esprimerlo come + oppure – il seno di un angolo appartenente al 1° quadrante (ossia, compreso fra 0° e 90°).

Stessa cosa per un coseno, una tangente o una cotangente:

$$\cos(-179^\circ) = \cos(179^\circ) = -\cos(180^\circ - 179^\circ) = -\cos1^\circ$$

$$tg \ 300^\circ = tg \ (300^\circ - 360^\circ) = tg \ (-60^\circ) = -tg \ 60^\circ$$

Si dice in questi casi che si è effettuata una "riduzione al 1º quadrante"

Se poi l'ultimo argomento (NOTA) ottenuto è un angolo maggiore di 45°, tramite le formule per gli angoli complementari potremo, volendo, "**ricondurci al 1° ottante**":

$$sen 80^{\circ} = cos (90^{\circ} - 80^{\circ}) = cos 10^{\circ}
tg 60^{\circ} = cotg (90^{\circ} - 60^{\circ}) = cotg 30^{\circ} = \frac{1}{tg 30^{\circ}}$$

NOTA: L' "ARGOMENTO" DI UNA FUNZIONE

Nell'espressione sen x l' "argomento" del seno è x;

nell'espressione
$$\operatorname{tg}\left(\alpha + \frac{\pi}{2}\right)$$
 l' "argomento" della tangente è $\alpha + \frac{\pi}{2}$.

Insomma, l' "argomento" di una funzione goniometrica, o, più in generale, di una funzione, è la variabile indipendente, o il valore che ad essa viene assegnato.