ENNI SULL'OPERAZIONE DI RADICE

CHE COS'E' L'OPERAZIONE DI "RADICE"

Si dice "radice quadrata" (cubica, quarta, quinta, ...) di un numero reale $a \ge 0$, quel numero reale $b \ge 0$ che elevato al quadrato (al cubo, alla quarta, alla quinta, ...) dà come risultato a.

 $\sqrt[n]{a} = b$ se e solo se $b^n = a$ **DEFINIZIONE:**

Quindi l'operazione di estrazione di radice è l'operazione inversa dell'elevamento a potenza.

Esempi: $\sqrt[4]{81} = 3$ perché $3^4 = 81$; $\sqrt[3]{\frac{8}{125}} = \frac{2}{5}$ perché $\left(\frac{2}{5}\right)^3 = \frac{8}{125}$; $\sqrt[2]{0,09} = 0,3$ perché $(0,3)^2 = 0,09$ $\overline{\text{INDICE}}_{\text{N}}$

Un simbolo del tipo $\sqrt[n]{a}$ viene chiamato "radicale".

Vale a dire, "radice" è il risultato,

"radicale" è il *simbolo* dell'operazione di estrazione di radice.

Il numero n viene detto "indice". Il numero a viene detto "radicando".

RADICALE

RADICANDO

L'indice n è un numero naturale, maggiore o uguale a 1.

Se l'indice vale 1, la radice è uguale al radicando:

L'indice 2 viene di norma sottinteso. Ossia, anziché scrivere \sqrt{a} si usa scrivere \sqrt{a} : $\sqrt[3]{a} = \sqrt{a}$ L'abbreviazione è conveniente, dato che la radice quadrata è di gran lunga la più utilizzata.

Ancora qualche esempio:

 $\sqrt[3]{1000} = 10$ perché $10^3 = 1000$; $\sqrt{25} = 5$ perché $5^2 = 25$;

 $\sqrt{\frac{1}{9}} = \frac{1}{3}$ perché $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$; $\sqrt[4]{0,0016} = 0,2$ perché $\left(0,2\right)^4 = 0,0016$ si può effettuare con la **virgola** oppure col **punto** (all'anglosassone).

La separazione della parte intera da quella decimale

- □ Se il radicando è >1 il valore della radice è *minore* del radicando stesso;
- ma se il radicando è <1 (compreso fra 0 e 1) il valore della radice è maggiore del radicando stesso.

DUE IDENTITA' VERAMENTE FONDAMENTALI

Indice ed esponente sono uguali: la radice e la potenza, operazioni inverse l'una dell'altra, si "compensano", quindi si possono semplificare

Anche qui, potenza e radice, operazioni inverse fra loro, si "compensano", da cui la semplificazione

ANTICIPAZIONI

I radicali saranno oggetto di uno studio più approfondito sul Volume 2. Qui ci limitiamo solo ad anticipare qualcosa sulle RADICI QUADRATE.

Per **moltiplicare** fra loro due radici quadrate basta moltiplicarne i radicandi: $\sqrt{2} \cdot \sqrt{3} = \sqrt{6}$; $\sqrt{4} \cdot \sqrt{25} = \sqrt{100}$

E viceversa, si può scrivere, ad esempio, $\sqrt{49.16} = \sqrt{49} \cdot \sqrt{16} = 7.4 = 28$.

▼ Invece sarebbe GRAVE ERRORE scrivere $\sqrt{4 + \sqrt{25}} = \sqrt{4 + 25}$ oppure $\sqrt{49 + 16} = \sqrt{49} + \sqrt{16}$!!!

LA RADICE QUADRATA DI UN NUMERO NEGATIVO NON ESISTE: $\sqrt{-49} = impossibile$ (NOTA: questa affermazione verrà ridiscussa quando nel Volume 2 introdurremo i cosiddetti "numeri complessi")

IL RISULTATO DI UNA RADICE QUADRATA È SEMPRE NON NEGATIVO (≥0), E UNICO: anche se esistono due numeri il cui quadrato dà 9 (il +3 e il -3), la scrittura $\sqrt{9}$ indica solo il +3.

▼ IMPORTANTE: $\sqrt{9} = 3$ e NON $\sqrt{9} = \pm 3$: tant'è vero che quando si risolve un'equazione come ad esempio la $x^2 = 25$, le cui soluzioni sono evidentemente i due numeri +5 e -5, NON SAREBBE CORRETTO esprimere tali soluzioni con la scrittura $x = \sqrt{25}$, perché in tal modo la soluzione negativa andrebbe persa; è invece giusto scrivere che $x^2 = 25 \leftrightarrow x = \pm \sqrt{25}$.

ESERCIZI DI BASE SUI RADICALI

Nei casi in cui il risultato non sia "tondo", evita la macchinetta procedendo invece per tentativi.

Ad esempio, per calcolare (meglio: approssimare) il numero $\sqrt{30}$ fino alla prima cifra decimale, puoi fare così:

$$5^2 = 25 \quad 6^2 = 36 > 30$$
 QUINDI $5 < \sqrt{30} < 6$

$$5,1^2 = 26,01$$
 $5,2^2 = 27,04$ $5,3^2 = 28,09$ $5,4^2 = 29,16$ $5,5^2 = \boxed{30,25 > 30}$ QUINDI $5,4 < \sqrt{30} < 5,5$

- $\sqrt[3]{8}$ 1)
- 2) $\sqrt[4]{625}$
- 3) $\sqrt{49}$
- 5) $\sqrt[3]{27}$

- 6) $\sqrt[7]{1}$
- 7) $\sqrt[8]{0}$
- 8) $\sqrt{-4}$
- 9) $\sqrt[3]{125}$
- 10) $\sqrt{36}$

- 11) $\sqrt[4]{16}$
- 12) $\sqrt[3]{216}$

17) $\sqrt{\frac{9}{16}}$

- 13) $\sqrt{196}$ 18) $\sqrt[3]{\frac{1}{8}}$
- 14) $\sqrt[4]{10000}$ 19) $\sqrt[3]{\frac{27}{1000}}$
- 15) $\sqrt[5]{243}$ 20) $\sqrt[4]{\frac{1}{16}}$

- 16) $\sqrt{900}$ 21) $\sqrt{\frac{121}{289}}$
- 22) $\sqrt{\frac{100}{9}}$
- 23) $\sqrt[4]{\frac{16}{81}}$
- 24) $\sqrt[3]{\frac{64}{729}}$
- 25) $\sqrt{10}$

- 26) $\sqrt{20}$
- 27) $\sqrt{60}$
- 28) $\sqrt{200}$
- 29) $\sqrt{2000}$
- 30) $\sqrt[3]{10}$

- 31) $\sqrt[3]{555}$
- 32) $\sqrt[4]{10}$
- 33) $\sqrt{0.09}$
- 34) $\sqrt{0.25}$
- 35) $\sqrt[3]{0,008}$

- 36) $\sqrt{0.4}$
- 37) $\sqrt[3]{0,1}$
- 38) $(\sqrt{39})^2$
- 39) $\sqrt{41} \cdot \sqrt{41}$
- 40) $\sqrt{23^2}$

- 41) $\sqrt{64}$
- 42) $\sqrt[3]{64}$
- 43) $\sqrt[6]{64}$
- 44) $\sqrt[10]{1024}$
- 45) $\sqrt{9/4}$

- 46) $\sqrt[3]{\frac{125}{343}}$
- 47) $\sqrt[4]{\frac{81}{625}}$
- 49) $\sqrt{\frac{121}{169}}$
- 50) $\sqrt[3]{\frac{8}{27}}$

- 51) $\sqrt[4]{13^4}$
- 52) $\sqrt{(-7)^2}$
- 53) $\sqrt{0}$
- 54) $\sqrt{1}$
- 55) $\sqrt{-9}$
- 56) Può la radice quadrata di un numero essere maggiore del numero stesso?
- 57) Può la radice cubica di un numero essere maggiore della radice quadrata dello stesso numero?
- 58) Quali numeri coincidono con la propria radice quadrata?
- 59) Quali sono quei due numeri che hanno la proprietà di essere uguali al doppio della propria radice quadrata?
- 60) Completa le seguenti tabelle.

а	0	0,1	(),5	2	3	4	5	6	9)	10	12
\sqrt{a} (1)	0	0,3	•		1,4								
а	20	50	100	1000	2000	5000	1000000) (ı	0,01	0	,0004	0,000001
\sqrt{a} (2)	4,							\sqrt{a}	(3)				
$\sqrt[3]{a}$ (2)		3,						$\sqrt[3]{a}$	(3)	0,2			

(1) fino alla 1^a cifra decimale (2) solo la parte intera (3) valore esatto o approssimazione ritenuta adeguata

RISULTATI, RISPOSTE

- 1) 2 2) 5 3) 7 4) 2 5) 3 6) 1 7) 0 8) imposs. 9) 5 10) 6 11) 2 12) 6 13) 14
- 14) 10 15) 3 16) 30 17) $\frac{3}{4}$ 18) $\frac{1}{2}$ 19) $\frac{3}{10}$ 20) $\frac{1}{2}$ 21) $\frac{11}{17}$ 22) $\frac{10}{3}$ 23) $\frac{2}{3}$ 24) $\frac{4}{9}$
- 25) 3,1... 26) 4,4... 27) 7,7... 28) 14,1... 29) 44,7... 30) 2,1... 31) 8,2... 32) 1,7... 33) 0,3
- 34) 0,5 35) 0,2 36) 0,6... 37) 0,4... 38) 39 39) 41 40) 23 41) 8 42) 4 43) 2 44) 2
- 45) $\frac{3}{2}$ 46) $\frac{5}{7}$ 47) $\frac{3}{5}$ 48) $\frac{1}{3}$ 49) $\frac{11}{13}$ 50) $\frac{2}{3}$ 51) 13 52) +7 53) 0 54) 1 55) imposs. 56) Sì, se il numero di partenza è compreso fra 0 e 1 57) Come per il 56) 58) 0 e 1 59) 0 e 4

6	(0)	а	0	0,1	0,5	2	3	4	5	6	9	10	12
		\sqrt{a}	0	0,3	0,7	1,4	1,7	2	2,2	2,4	. 3	3,1	3,4
	а	20	5	i) 1(00 100	00 200	0 5000	1(000000	а	0.01	0.0004	0.000001

a	20	50	100	1000	2000	5000	1000000	а	0,01	0,0004	0,000001
\sqrt{a}	4,	7,	10	31,	44,	70,	1000	\sqrt{a}	0,1	0,02	0,001
$\sqrt[3]{a}$	2,	3,	4,	10	12,	17,	100	$\sqrt[3]{a}$	0,2	0,07	0,01