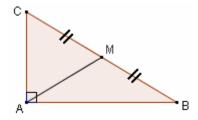
3.6 - ALCUNI TEOREMI SUL TRIANGOLO RETTANGOLO

TEOREMA

In un triangolo rettangolo, la mediana relativa all'ipotenusa è metà dell'ipotenusa stessa.



HP:

$$\widehat{CAB} = 90^{\circ}$$
; $\overline{BM} = \overline{MC}$

TH:

$$\overline{AM} = \frac{1}{2}\overline{BC} \ \left(=\overline{BM} = \overline{MC}\right)$$

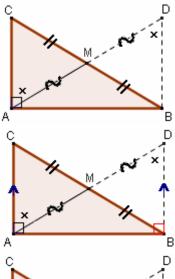
DIM.

prolungo la mediana \overline{AM} di un segmento $\overline{MD} = \overline{AM}$.

Costruzione: Congiungo D con B.

I due triangoli AMC e DMB sono uguali per il 1° Criterio: MC = BM per ipotesi, $\overline{AM} = \overline{MD}$ per costruzione, $\widehat{AMC} = \widehat{DMB}$ perché opposti al vertice. Quindi, in particolare, si ha $\widehat{CAM} = \widehat{D}$.

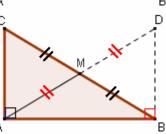
E poiché CÂM e D sono in posizione di alterni interni rispetto alle due rette BD e AC con la trasversale AD, dal fatto che siano uguali si deduce che BD || AC. Ma allora, essendo $\widehat{CAB} = 90^{\circ}$,



sarà retto anche DBA. Se adesso confrontiamo i due triangoli ABC e ABD, vediamo che hanno $\widehat{CAB} = \widehat{DBA} = 90^{\circ}$; \overline{AB} in comune;

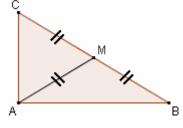
 $\overline{AC} = \overline{BD}$ per l'uguaglianza AMC = DMB dunque sono uguali per il 1° Criterio e in particolare $\overline{BC} = \overline{AD}$.

 $\overline{\overline{AM}} = \overline{MD} = \frac{1}{2}\overline{AD} = \left| \frac{1}{2}\overline{BC} \right| = \overline{BM} = \overline{MC}$, C.V.D. E perciò



TEOREMA

Se in un triangolo la mediana relativa ad un lato è metà del lato stesso, allora quel triangolo è rettangolo (e il lato in questione ne è l'ipotenusa).

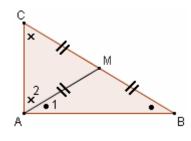


HP: $\overline{AM} = \overline{BM} = \overline{MC}$

TH: $\widehat{CAB} = 90^{\circ}$

DIMOSTRAZIONE

I triangoli AMB, AMC sono isosceli per HP; segue (vedi figura qui a fianco) $\widehat{A}_1 = \widehat{B}, \ \widehat{A}_2 = \widehat{C}$. Ma la somma di tutti e quattro gli angoli \hat{A}_1 , \hat{B} , \hat{A}_2 , \hat{C} dà 180°; quindi la somma $\widehat{A}_1 + \widehat{A}_2$ (che costituisce poi l'angolo \widehat{A}) darà $180^{\circ}/2 = 90^{\circ}$.



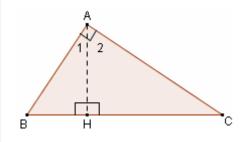
Schematicamente:

$$\begin{split} \widehat{A} + \widehat{B} + \widehat{C} &= 180^{\circ} \\ \widehat{A}_{1} + \widehat{A}_{2} + \widehat{B} + \widehat{C} &= 180^{\circ} \\ \widehat{A}_{1} + \widehat{A}_{2} + \widehat{A}_{1} + \widehat{A}_{2} &= 180^{\circ} \\ 2\widehat{A}_{1} + 2\widehat{A}_{2} &= 180^{\circ} \\ 2\left(\widehat{A}_{1} + \widehat{A}_{2}\right) &= 180^{\circ} \\ \widehat{A}_{1} + \widehat{A}_{2} &= 90^{\circ} \quad \text{C.V.D.} \end{split}$$

♥ Gli studenti tendono ad enunciare l'ultimo teorema in modo scorretto, dicendo che "se in un triangolo la mediana relativa all'ipotenusa è metà dell'ipotenusa stessa, allora il triangolo è rettangolo". ... Eh, no! Se si utilizza fin dall'inizio il termine "ipotenusa", sembra che sia noto già in partenza che il triangolo è rettangolo!

TEOREMA

Se in un triangolo rettangolo si traccia l'altezza relativa all'ipotenusa, questa lo suddivide in due triangoli, simili fra loro e con quello di partenza (due triangoli sono "simili" quando hanno gli angoli rispettivamente uguali).

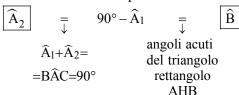


HP ABC rettangolo in \widehat{A} $AH \perp BC$

TH ABC, AHB, AHC hanno gli angoli rispettivamente uguali

DIM.

Il triangolo ABH è rettangolo in \widehat{H} , dunque i suoi due angoli acuti \widehat{B} e \widehat{A}_1 sono complementari. Ma anche \widehat{A}_2 è complementare di \widehat{A}_1 : dunque $\widehat{A}_2 = \widehat{B}$ perché complementari dello stesso angolo \widehat{A}_1 .



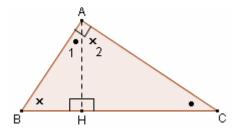
Analogamente, $\widehat{A}_1 = \widehat{C}$ perché complementari dello stesso angolo \widehat{A}_2 .

$$\begin{array}{|c|c|c|} \hline \widehat{A_1} & = & 90^{\circ} - \widehat{A_2} & = & \hline \widehat{C} \\ \hline \widehat{A_1 + \widehat{A_2}} & & \text{angoli acuti del triangolo} \\ = B\widehat{A}C = 90^{\circ} & & \text{rettangolo} \\ \hline & AHC & \\ \hline \end{array}$$

La situazione è pertanto quella illustrata nella figura qui a fianco.

La tesi è dimostrata! I tre triangoli ABC, AHB, AHC hanno

gli angoli rispettivamente uguali (ognuno dei tre ha un angolo retto, un angolo "pallino" e un angolo "crocetta"): sono dunque "simili".

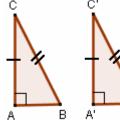


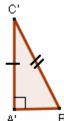
TEOREMA ("Criterio Particolare di Uguaglianza dei Triangoli Rettangoli") Se due triangoli rettangoli hanno rispettivamente uguali l'ipotenusa e un cateto, allora sono uguali.

OSSERVAZIONE

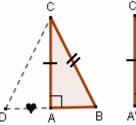
Notare che in questo teorema si suppone l'uguaglianza di due lati e di un angolo, ma quest'ultimo non è l'angolo compreso.

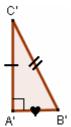
Si tratta perciò di un teorema *nuovo*, non coincidente con nessuno dei tre Criteri di uguaglianza già noti.





 $\widehat{BAC} = B'\widehat{A}'C' = 90^{\circ}$ $\overline{BC} = \overline{B'C'}$. $\overline{AC} = \overline{A'C'}$ TH ABC = A'B'C'





♥ Nei testi in Inglese. questo enunciato è denominato "the Hypotenuse-Leg Theorem". Side = lato

Leg = cateto

DIM.

Prolunghiamo il segmento \overline{AB} , dalla parte di A, di un segmento $\overline{AD} = \overline{A'B'}$.

Confrontando adesso i due triangoli ADC, A'B'C', vediamo che sono uguali per il Primo Criterio (l'angolo DAC è evidentemente retto perché supplementare dell'angolo retto BAC).

Ma allora è, in particolare, $\overline{DC} = \overline{B'C'}$; era poi $\overline{B'C'} = \overline{BC}$ per ipotesi, per cui si ha $\overline{DC} = \overline{BC}$. Dunque il triangolo BDC è isoscele; perciò \overline{CA} , che ne è altezza relativa alla base, farà anche da mediana: $\overline{AD} = \overline{AB}$. Ma \overline{AD} era stato costruito uguale ad $\overline{A'B'}$; ne consegue $\overline{AB} = \overline{A'B'}$.

E a questo punto, se andiamo a confrontare i due triangoli ABC e A'B'C',

li possiamo dire uguali per il Primo Criterio (o per il Terzo, indifferentemente).

La tesi è dimostrata.