PRODOTTI NOTEVOLI

12. QUADRATO DI UN BINOMIO

$$(a+b)^2$$
 = $(a+b)(a+b) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$

Abbiamo così ricavato la formula

$$(a+b)^2 = a^2 + 2ab + b^2$$

che si può esprimere a parole nel modo seguente.

Il quadrato di un binomio si esegue facendo

- il quadrato del primo termine;
- 2 volte il primo termine × il secondo termine (= il doppio prodotto del primo per il secondo)
- il quadrato del secondo termine

Esempi di applicazione della formula:

a)
$$(3x+5y)^2 = (3x)^2 + 2 \cdot 3x \cdot 5y + (5y)^2 = 9x^2 + 30xy + 25y^2$$

b)
$$(a-6x)^2 = a^2 + 2 \cdot a \cdot (-6x) + (-6x)^2 = a^2 - 12ax + 36x^2$$

 $(a+(-6x))^2$

- ♥ Ricordare che la formula va applicata mettendo (ovviamente) al posto di "a" il primo termine del binomio dato, e al posto di "b" il secondo termine, e tenendo soprattutto presente che ciascun termine deve comprendere anche il segno che lo precede!
- I passaggi intermedi si possono fare a mente; un buon consiglio è tuttavia quello di indicare il doppio prodotto, prima di svolgerlo, nei casi in cui questo non è semplicissimo.

c)
$$\left(-\frac{1}{4}x + 3y\right)^2 = \left(\begin{array}{cc} -\frac{1}{4}x \\ \frac{1}{1^\circ} \\ termine \end{array}\right)^2 = \left(-\frac{1}{4}x\right)^2 + 2 \cdot \left(-\frac{1}{42}x\right) \cdot 3y + (3y)^2 = \frac{1}{16}x^2 - \frac{3}{2}xy + 9y^2$$

d)
$$\left(\frac{-t}{-3} \right)^2 = (-t)^2 + 2 \cdot (-t) \cdot (-3) + (-3)^2 = t^2 + 6t + 9$$

e)
$$(3x^2 + 7x)^2 = 9x^4 + 42x^3 + 49x^2$$

f)
$$(2a-b)^2 = 4a^2 - 4ab + b^2$$

• Verifica per a = 5, b = 3

1° membro =
$$(2a-b)^2 = (2\cdot5-3)^2 = (10-3)^2 = 7^2 = \boxed{49}$$

2° membro = $4a^2 - 4ab + b^2 = 4\cdot5^2 - 4\cdot5\cdot3 + 3^2 = 4\cdot25 - 60 + 9 = 100 - 60 + 9 = \boxed{49}$

• Verifica svolgendo il calcolo letterale in un altro modo:

$$(2a-b)^2 = (2a-b)(2a-b) = 4a^2 - 2ab - 2ab + b^2 = 4a^2 - 4ab + b^2$$

g)
$$\left(-\frac{3}{4}x^3 + \frac{5}{6}x^2y\right)^2 = \frac{9}{16}x^6 + \cancel{2}\cdot\left(-\frac{\cancel{3}}{4}x^3\right)\cdot\frac{5}{\cancel{6}\cancel{2}}x^2y + \frac{25}{36}x^4y^2 = \frac{9}{16}x^6 - \frac{5}{4}x^5y + \frac{25}{36}x^4y^2$$

h)
$$\left(-5-x^2\right)^2 = 25+10x^2+x^4$$

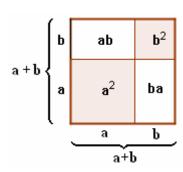
i) Un esempio di espressione:

$$(x-1)(x-6)+3(x-1)^2-(2x-3)^2=x^2-6x-x+6+3(x^2-2x+1)-(4x^2-12x+9)=$$

$$=x^2-7x+6+3x^2-6x+3-4x^2+12x-9=-x$$

Tutti i passaggi intermedi, infatti, possono essere svolti a mente, senza scrivere nulla!

1)
$$53^2 = (50+3)^2 = 50^2 + 2 \cdot 50 \cdot 3 + 3^2 = 2500 + 300 + 9 = 2809$$


m)
$$29^2 = (30-1)^2 = 900-60+1=841$$

La figura qui a destra costituisce una visualizzazione-giustificazione geometrica della formula per il quadrato di un binomio.

Essa mostra un quadrato il cui lato misura a + b. L'area di questo quadrato può essere calcolata in 2 modi diversi.

I) Pensando direttamente all'area totale si ottiene
$$S = (a + b)^2$$

II) ... e sommando invece le 4 aree parziali si ha
$$S = a^2 + ba + ab + b^2 = a^2 + 2ab + b^2$$

Il limite di questa giustificazione sta nel fatto che si riferisce solo ai casi in cui a, b assumano valori non negativi.

Poiché però i due calcoli devono portare al medesimo risultato, ecco che salta fuori la nostra formula.

Gli esempi che seguono presentano esponenti letterali:

n)
$$(3a^k - 2)^2 = (3a^k)^2 + 2 \cdot 3a^k \cdot (-2) + (-2)^2 = 9a^{2k} - 12a^k + 4$$

o)
$$(a^x + a^y)^2 = (a^x)^2 + 2 \cdot a^x \cdot a^y + (a^y)^2 = a^{2x} + 2a^{x+y} + a^{2y}$$

p)
$$(x^{a+b} + x^{a-b})^2 = (x^{a+b})^2 + 2 \cdot x^{a+b} \cdot x^{a-b} + (x^{a-b})^2 = x^{2a+2b} + 2x^{2a} + x^{2a-2b}$$

ESERCIZI

1)
$$(x+1)^2$$

2)
$$(x+2)^2$$

3)
$$(x+3)^2$$
 con verifica po

4)
$$(x-4)^2$$

5)
$$(x-5)^2$$

6)
$$(x-6)^2$$
 con verifica per $x =$

7)
$$(4w-7)^2$$

2)
$$(x+2)^2$$

5) $(x-5)^2$
8) $(3x-2y)^2$

9)
$$(-t+8)^2$$
 con due verifiche:
per $t=3$ e per $t=-2$

$$10) \left(\frac{11}{12} x^2 + \frac{5}{2} x \right)^2$$

$$11) \left(-\frac{1}{5}e^5 + \frac{1}{3}e^3 \right)^2$$

1)
$$(x+1)^2$$
 2) $(x+2)^2$ 3) $(x+3)^2$ con verifica per $x=1$
4) $(x-4)^2$ 5) $(x-5)^2$ 6) $(x-6)^2$ con verifica per $x=8$
7) $(4w-7)^2$ 8) $(3x-2y)^2$ 9) $(-t+8)^2$ con due verifiche: per $t=3$ e per $t=-2$
10) $\left(\frac{11}{12}x^2 + \frac{5}{2}x\right)^2$ 11) $\left(-\frac{1}{5}e^5 + \frac{1}{3}e^3\right)^2$ 12) $\left(a+\frac{1}{2}\right)^2$ con verifica per $a=1/2$

13)
$$(2k-9)^2$$

14)
$$(1-x^2)^2$$

15)
$$(-abc-1)^2$$

13)
$$(2k-9)^2$$
 14) $(1-x^2)^2$ 15) $(-abc-1)^2$
16) Calcolo mentale: 17) Calcolo mentale: 18) Calcolo mentale: $61^2 = (60+1)^2 = ...$ $59^2 = (60-1)^2 = ...$ $999^2 = (1000-1)$

7) Calcolo mentale:
$$59^2 = (60-1)^2 = ...$$

18) Calcolo mentale:

$$999^2 = (1000 - 1)^2 = ...$$

19) Ricordando che
$$24^2 = 576$$
, calcola a mente $2^{20} = \left(2^{10}\right)^2 = 1024^2$ (il "Mega" \Rightarrow dell'Informatica)

$$20) \left(4s^n + 3s\right)^2$$

21)
$$\left(a^{m+1} + a^{m+2}\right)^2$$

22)
$$(5x^n - 4x^p)^2$$

RISULTATI

1)
$$x^2 + 2x + 1$$

2)
$$x^2 + 4x + 4$$

3)
$$x^2 + 6x + 9$$

4)
$$x^2 - 8x + 16$$

5)
$$x^2 - 10x + 25$$

6)
$$x^2 - 12x + 36$$

7)
$$16w^2 - 56w + 49$$

8)
$$9x^2 - 12xy + 4y^2$$

9)
$$t^2 - 16t + 64$$

1)
$$x^{2}+2x+1$$

2) $x^{2}+4x+4$
4) $x^{2}-8x+16$
5) $x^{2}-10x+25$
7) $16w^{2}-56w+49$
8) $9x^{2}-12xy+4y^{2}$
10) $\frac{121}{144}x^{4}+\frac{55}{12}x^{3}+\frac{25}{4}x^{2}$
11) $\frac{1}{25}e^{10}-\frac{2}{15}e^{8}+\frac{1}{9}e^{6}$

11)
$$\frac{1}{25}e^{10} - \frac{2}{15}e^8 + \frac{1}{9}e^6$$

12)
$$a^2 + a + \frac{1}{4}$$

13)
$$4k^2 - 36k + 81$$

15)
$$a^2b^2c^2 + 2abc + 1$$

20)
$$16s^{2n} + 24s^{n+1} + 9s^{2}$$

20)
$$16s^{2n} + 24s^{n+1} + 9s^2$$
 21) $a^{2m+2} + 2a^{2m+3} + a^{2m+4}$

22)
$$25x^{2n} - 40x^{n+p} + 16x^{2p}$$