LA FORMULA $\ell_n \rightarrow \ell_{2n}$

Risolviamo infine il seguente problema (formula $\ell_n o \ell_{2n}$):

nota la misura ℓ_n

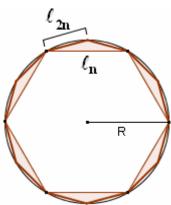
del lato di un poligono regolare di n lati,

inscritto in un cerchio di raggio R,

determinare la misura ℓ_{2n}

del lato del poligono regolare inscritto,

avente un numero di lati doppio.



Sia $AB = \ell_n$ (vedi figura qui a fianco).

Il diametro PQ perpendicolare ad AB

divide in metà tanto la corda quanto l'arco di estremi A e B; si avrà pertanto $AP = \ell_{2n}$.

Applicando Pitagora al triangolo rettangolo AHO, si trae

$$OH = \sqrt{R^2 - \left(\frac{1}{2}\ell_n\right)^2} = \sqrt{R^2 - \frac{1}{4}\ell_n^2} = \sqrt{\frac{4R^2 - \ell_n^2}{4}} = \frac{1}{2}\sqrt{4R^2 - \ell_n^2}$$

da cui

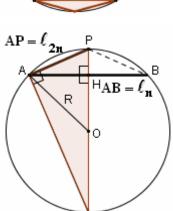
$$PH = R - \frac{1}{2} \sqrt{4R^2 - \ell_n^2}$$

Applichiamo ora il Primo Teorema di Euclide al triangolo PAQ, che è rettangolo in A perché inscritto in una semicirconferenza:

$$\ell_{2n}^2 = AP^2 = PQ \cdot PH = 2R \left(R - \frac{1}{2} \sqrt{4R^2 - \ell_n^2} \right) = 2R^2 - R\sqrt{4R^2 - \ell_n^2}$$

da cui la formula cercata:

$$\ell_{2n} = \sqrt{2R^2 - R\sqrt{4R^2 - \ell_n^2}}$$
 FORMULA $\ell_n \to \ell_{2n}$



ESERCIZIO AL COMPUTER

Con un foglio elettronico calcola, a partire da $\ell_6 = 1$ (supponendo R = 1: come sappiamo, il lato dell'esagono regolare inscritto è uguale al raggio), i valori di ℓ_{12} , ℓ_{24} , ℓ_{48} , ...

APPLICAZIONI DELLA FORMULA

• Per esempio, siccome sappiamo che $\ell_4 = R\sqrt{2}$, avremo:

$$\begin{split} \ell_8 &= \sqrt{2R^2 - R\sqrt{4R^2 - \ell_4^2}} = \\ &= \sqrt{2R^2 - R\sqrt{4R^2 - (R\sqrt{2})^2}} = \sqrt{2R^2 - R\sqrt{4R^2 - 2R^2}} = \sqrt{2R^2 - R\sqrt{2R^2}} = \sqrt{2R^2 - R^2\sqrt{2}} = R\sqrt{2 - \sqrt{2}} \end{split}$$

 $\ell_8 = R\sqrt{2-\sqrt{2}}$ (lato dell'OTTAGONO REGOLARE inscritto in un cerchio di raggio R)

Per determinare poi ℓ_5 , potremo partire dalla formula $\ell_{10} = \sqrt{2R^2 - R\sqrt{4R^2 - \ell_5^2}}$, risolvendola rispetto a ℓ_5 e poi sostituendo al posto di ℓ_{10} il valore noto $\ell_{10} = \frac{\sqrt{5} - 1}{2}R$.

Prova a fare i calcoli: otterrai alla fine

$$\ell_5 = \frac{\sqrt{10 - 2\sqrt{5}}}{2} R$$
 (lato del PENTAGONO REGOLARE inscritto in un cerchio di raggio R)