8.  UNA RASSEGNA DI PROBLEMI A UNA SOLA INCOGNITA (soluzioni a pag. 169)

 

1)  Se aggiungessi 21 litri di benzina al serbatoio della mia auto, il cui contenuto è attualmente pari

     a 1/4 della capacità totale, il serbatoio raggiungerebbe i 3/5 della sua capacità.

 Dimmi quanti litri al massimo può contenere il serbatoio. 

 

   RISOLUZIONE GUIDATA

 

    1a fase: pongo la x)    

    2a fase: esprimo le quantità in gioco per mezzo di x)   contenuto attuale in litri del serbatoio =  

                                                           ♥   

     

    3a fase: imposto l’equazione risolvente)              da cui si trae .

 

♥  OSSERVAZIONE

    Questo problema, particolarmente semplice, avrebbe potuto anche essere risolto “per via aritmetica”,

    cioè senza ricorrere alla x. Dal testo si ricava infatti che 21 litri rappresentano

    una frazione, del serbatoio, uguale a  .

     Ma se 21 litri sono i  di un serbatoio, il serbatoio intero equivale a litri  .

 

 

 

2)  Rossana esce di casa con una banconota da 20 euro e spende 7 euro al cinema; avendo poi acquistato

     6 biglietti del metro e 4 dell’autobus (un biglietto per l’autobus costa 1 volta e mezza il biglietto

     per la metropolitana), rimane con 1 euro soltanto, che lascia a un mendicante per strada.

     Quanto costa il biglietto della metropolitana?

 

      RISOLUZIONE GUIDATA

 

      1a fase)   

      2a fase)   

      3a fase)  Equazione risolvente:     

                                                         (oppure, è lo stesso:  )

 

3)  Mario e Vincenzo hanno in tasca, fra tutti e due, 52 euro. Ciascuno spende per un mega-gelato 4 euro,

     dopodiché Mario si trova ad avere in tasca esattamente il triplo di Vincenzo.

     Quanto possedevano inizialmente i due?

 

      RISOLUZIONE GUIDATA

 

      1a fase)   

      2a fase)   

      3a fase)  Equazione risolvente:     

 

OSSERVAZIONI

 

q     Evidentemente, si sarebbe potuto anche porre  

 La risoluzione sarebbe stata molto simile: hai voglia di effettuarla anche in questo modo?

 

q     Se avessimo posto  

                  avremmo potuto scrivere, ad esempio:

 

 

 

Equazione risolvente:   

 

 ♥   D’ALTRONDE CI SAREBBERO, PER IL PROBLEMA DI MARIO E VINCENZO,     

      ANCHE ALTRE POSSIBILI VARIANTI DI RISOLUZIONE:

      TIENI SEMPRE PRESENTE CHE DI FRONTE A QUASI TUTTI I PROBLEMI

      POSSIAMO SCEGLIERE DI PROCEDERE IN PIU’ MODI DIVERSI !!!

 

 ♥   In certi problemi, è possibile “saltare” l’esposizione della seconda fase

      perché la si “ingloba nella terza fase”, vale a dire: dopo aver posto la x,

      se il problema è semplice, in pratica si può scrivere subito l’equazione risolvente.

  

  4)  Ho acquistato quattro confezioni di pennarelli; tre uguali fra loro, e la quarta con inchiostro

      di migliore qualità, ma con 4 pennarelli in meno. Se in totale i pennarelli sono in numero di 68,

      di quanti pennarelli era composta ciascuna confezione?  

 

 5)  Pierino riceve la paghetta mensile e ne fa fuori subito metà per un regalo di compleanno a un amico.

      Successivamente, essendo molto goloso e per via della giornata davvero caldissima, si sbafa ben 4

      gelati da euro 2,50 l’uno, e rimane a questo punto con la decima parte della paghetta soltanto.

  Determina l’ammontare di questa.

 

 6)  Paolo nei giorni feriali pranza in una trattoria molto alla buona, ma il sabato e la domenica

      preferisce concedersi il ristorante, dove un pasto gli costa 4 euro in più rispetto alla trattoria.

      Qual è il costo di un pranzo in trattoria, se in una settimana Paolo spende in tutto 71 euro?

 

 7)  Mi son procurato per una festa coi vecchi compagni di Liceo delle bottiglie di spumante e alcune torte.

      Sapendo che una torta costa due volte e mezza una bottiglia, e che in totale ho comprato 8 bottiglie e

      6 torte, spendendo in tutto 115 euro, dimmi qual è il prezzo di una bottiglia e quale quello di una torta.

 

 8)  Se Arianna si è iscritta ad una palestra la cui frequentazione costa 20 euro al mese, più una tassa di

      iscrizione di 36 euro, e Carolina ha preferito un’altra palestra, per iscriversi alla quale sono necessari

      50 euro ma la cui tariffa mensile è di euro 18, stabilisci, tramite un’equazione, dopo quanti mesi

      si troveranno ad aver speso la medesima cifra.  

 

 9)  In una serata al pub durante una gita scolastica, vengono consumate

      7 gassose, 23 aranciate (un’aranciata costa 50 centesimi più di una gassosa),

      e 15 birre (una birra costa 1,50 euro più di un’aranciata).

      Sapendo che la spesa complessiva è di euro 122,50, stabilisci qual è il prezzo di una gassosa.

 

10) Mumble mumble … Se il gestore del ristorante nel quale sono solito pasteggiare a prezzo fisso

      dal Lunedì al Venerdì mi concedesse uno sconto di 3 euro a pasto, per la stessa spesa complessiva

      potrei pranzare anche il Sabato.

… Hurrah! Ha accettato la mia proposta! Tu ora dimmi: quanto mi costa il pasto scontato?   

 

11) Lauretta, proprietaria di un bar, ha acquistato un certo numero di bottiglie di sciroppo di orzata

      a 3 euro l’una; se ogni bottiglia fosse costata 50 centesimi in meno, ne avrebbe potute comprare

      per lo stesso prezzo 3 in più. Di quante bottiglie si tratta? 

 

12) “Tre fratelli, Anselmo, Beniamino e Carmelo, escono la domenica pomeriggio:

        Anselmo con la metà dei soldi di Beniamino, e Carmelo con 10 euro in meno di Beniamino.

        In totale i tre hanno in tasca 35 euro. Quanto possiede ciascuno?”

 

      Le tre compagne di scuola Alice, Brigitta e Cecilia si mettono all’opera per risolvere questo problema

      e a un certo punto confrontano i loro quaderni.

q      Su quello di Alice c’è l’equazione:  con la soluzione .

q      Brigitta ha scritto invece l’equazione  e risolvendola ha trovato .

q      Infine il quaderno di Cecilia porta l’equazione  da cui si ricava .

      Chi delle tre ha fatto giusto?

 

 

  NON HO l’ETA’   

 

13)  Fra 11 anni l’età di Mario sarà tripla di quella che egli aveva 9 anni fa. Qual è l’età attuale di Mario?

 

RISOLUZIONE GUIDATA

      1a fase)   

      2a fase)   

      3a fase)  Equazione risolvente:   

 

14) Oggi un padre ha il triplo dell’età di suo figlio, ma fra 14 anni le età saranno una doppia dell’altra.

      Quanti anni hanno i due ora?

 

15) Due fratelli hanno rispettivamente 15 e 21 anni, il loro padre 43 anni.

      Si chiede fra quanti anni l’età del padre sarà uguale alla somma delle età dei due figli.  

 

16) Anna e Barbara sono sorelle; Anna è nata 3 anni prima. Sapendo che 6 anni fa Anna aveva una volta

      e mezza l’età di Barbara, sapresti determinare le età attuali delle due?

 

 

17) Determina due numeri tali che la loro differenza sia 3 e che la differenza fra i 5/6 del maggiore

e i 2/5 del minore sia 48  (  ♥  tieni sempre presente, quando fai una “differenza”, che devi seguire

l’ORDINE in cui vengono menzionati i termini. Quindi la differenza fra A e B è , NON  ).

 

18) Trova tre numeri sapendo che:

·         il secondo supera di 12 la metà del primo;

·         il terzo è il quintuplo della differenza fra il secondo e il primo;

·         la media del tre numeri è 20.

 

19) In un cortile, nel quale vi sono conigli e galline, si contano in totale 23 teste e 62 zampe.

Quanti sono i conigli e quante le galline?

 

20) In un’opera scritta fra il V e il VI secolo, nota come l'Antologia Greca,

     l’autore Metrodoro di Bisanzio riferisce il seguente epigramma, riguardante il matematico Diofanto,

vissuto ad Alessandria d’Egitto in epoca piuttosto incerta, forse nel III secolo dopo Cristo:

 

Il Maestro trascorse 1/6 della sua vita nella fanciullezza, 1/12 nell’adolescenza,

1/7 da adulto non ancora sposato; dopo 5 anni dal matrimonio ebbe un figlio, che per volontà

del Destino visse solo la metà degli anni del padre, morendo, ahimè, 4 anni prima di lui.

 

Quanti anni visse Diofanto?

 

21) Trova due numeri sapendo che è uguale a 51 sia la loro somma che la differenza dei loro quadrati.

 

22) Due numeri (non interi) hanno come somma 18, come differenza dei quadrati 54. Determinali.

 

23) Trova tre numeri pari consecutivi, sapendo che la loro somma è 1542.

 

24) Trova tre numeri pari consecutivi, che diano per somma 3004. 

 

25) Trova due interi positivi sapendo che si tratta di due multipli consecutivi di 7,

e che la differenza dei loro quadrati è 931.

 

26) Trova quattro numeri naturali consecutivi sapendo che la somma dei quadrati del primo

e del quarto è uguale alla somma dei quadrati degli altri due ( … uh, che strana questa equazione!) 

 

27) Trova quattro numeri naturali consecutivi sapendo che la somma dei quadrati del primo

e del quarto supera di 4 unità la somma dei quadrati degli altri due ( … che strana questa equazione!)  

 

28) Un carico di 111 kg viene suddiviso in tre parti, in modo che la seconda parte sia i  della prima,

      e la terza sia i  della seconda. Quanto pesa ciascuna parte?

 

29) In un nuovissimo gioco a quiz televisivo, il concorrente può anche rimetterci! Si vincono infatti

      150 euro per ogni risposta esatta, ma se ne perdono 120 per ogni risposta errata. Se un concorrente

      dopo 18 domande ha perso 270 euro, quante risposte giuste e quante sbagliate ha fornito? 

 

30) Con una grossa damigiana di vino potrei riempire, in alternativa, 160 bottiglie oppure 96

bottiglioni (un bottiglione ha una capacità di  litro superiore a quella di una bottiglia).

Quanti litri di vino contengono: una bottiglia, un bottiglione, la damigiana?

 

31) Ho trovato in soffitta 60 vecchie monete, alcune da 50 Lire e altre da 100 Lire,

per un totale di 4400 Lire. Mi sai dire quante di queste monete sono da 50 e quante da 100?

 

32) Quando nacque suo figlio Giuseppe, il signor Mario aveva 31 anni. Sapendo che fra 10 anni l’età

      del signor Mario sarà uguale a 6 volte l’età che aveva Giuseppe 4 anni fa, trovare le età attuali dei due.

 

33) Per la festa del suo compleanno, Monica acquista meringhe e bignole, per un totale di 4 chili.

Durante la festa, vengono mangiati i 3/8 delle meringhe e i 5/6 delle bignole;

alla fine, il peso totale delle paste avanzate è di 1 kg e 4 etti.

Quanti etti di meringhe e quanti etti di bignole aveva comprato Monica?

 

34) Sei studenti discutono dei loro voti di Maturità.

      I primi 5 hanno preso, rispettivamente: 100, 90, 90, 78, 72.

      Che voto ha preso il rimanente, se la media dei loro voti è stata 88?

 

 

35) In una classe ci sono 25 allievi, parte maschi e parte femmine. In una impegnativa verifica scritta, la

      media dei voti dei maschi è stata esattamente 6,5 mentre la media dei voti delle ragazze esattamente 7.

Stabilisci il numero esatto dei maschi e delle femmine componenti la classe sapendo che la media

complessiva di tutti i voti è risultata uguale a 6,64.  

 

36) Un gruppo di amici, in “società”, dopo tante giocate fallite ha finalmente vinto al Lotto una modesta

      cifra. Stabilisci l’ammontare di questa, nonché il numero degli amici, sapendo che

  se ogni persona incassasse 40 euro, ne rimarrebbero ancora 10 da spartire, mentre

  affinché si potessero dare 45 euro a ciascuno la vincita avrebbe dovuto essere di 20 euro maggiore.  

 

37) Antonio ha 38 anni, sua moglie Chiara 6 in meno; dal loro matrimonio sono nati ben 4 figli,

      che hanno oggi 8, 10, 12 e 14 anni rispettivamente. Determina, tramite un’equazione,

      fra quanti anni la somma delle età dei figli sarà uguale alla somma delle età dei genitori.

 

38) Mariuccia ha raccolto 40 steli in un prato di trifogli, salvo poi accorgersi che una parte di questi

  erano in realtà quadrifogli. Se si contano in totale 127 “lobi” ( = foglioline), quanti sono i quadrifogli?   

 

39) I biglietti per uno spettacolo costano 8  per gli adulti, ma i minorenni godono di uno sconto del 25%.

      Se sono stati venduti 240 biglietti e incassati 1720 euro, quanti sono stati gli spettatori minorenni?

 

 

40) Maledetto vizio delle carte!

Oggi sono andato al bar con una certa cifra e ho accettato di sedermi al tavolo del poker.

In questo modo ho subito perso la metà di ciò che possedevo, più 50 euro.

Poi mi sono messo a giocare a ramino, e ci ho lasciato i 3/5 di quello che mi restava.

Così sono rimasto - sob!  - con 120 miseri euro, che ora devono bastarmi fino alla fine del mese.

Perché sono così stupido? E quanto possedevo inizialmente?

 

 

41) Due sacchi contengono complessivamente 96 kg di cemento. Se 9 kg vengono trasferiti dal più pesante

      al più leggero, la differenza fra i due pesi diventa di 6 kg. Quanto pesavano inizialmente i due sacchi?

 

 

42) Se a ciascuno dei quattro numeri  21, 31, 39, 55  si aggiungesse uno stesso numero x,

i quattro numeri ottenuti formerebbero, nell’ordine, una proporzione. Quanto vale x

 

 

 

  INVESTIMENTI E PERCENTUALI

 

43) Ho investito la somma di 6000 euro suddividendola in due parti A e B;

sulla prima parte ho guadagnato il 3%, mentre sulla seconda ho perso il 2%.

Complessivamente, sono rimasto esattamente con quanto avevo all’inizio!

A quanto ammontavano le due parti A e B?   

 

      RISOLUZIONE GUIDATA

 

      1a fase)   

      2a fase)   

                     

                     

      3a fase)  Equazione risolvente:   

 

44) Un grosso emporio acquista da una fabbrica, in previsione dell’inverno, una partita di 30 stufe,

alcune del modello A (più costoso: 1400 euro), altre del modello B (un po’ più economico: 1200 euro).

Dato l’ammontare cospicuo dell’ordine, la fabbrica accorda uno sconto del 10% sui pezzi

che sarebbero costati 1200 euro, e del 15% sui pezzi che sarebbero costati 1400 euro.

Sapendo che in totale con questi sconti l’emporio ha risparmiato 4950 euro,

stabilisci quante stufe del modello A e quante del modello B sono state acquistate.  

 

45) Sul prezzo di una bella giacca ho ottenuto lo sconto del 15% e l’ho quindi pagata 178,50 euro.

Qual era il prezzo iniziale?  

 

46) Ho investito 20000 euro dei miei risparmi in azioni, dividendo la cifra in due tranche, ma, purtroppo,

perdendo su ciascuna. Se sulla prima tranche ci ho rimesso il 5%, sulla seconda il 3%, e in totale il mio

capitale si è ridotto al valore di 19240 euro, stabilisci come l’avevo ripartito.

 

47) Se ho suddiviso il mio patrimonio in due parti A e B, investendo ciascuna in due modi diversi,

      e il mio guadagno è stato del 3% sulla parte A, del 4% sulla parte B, ma sia sulla parte A che sulla

      parte B ho guadagnato 600 euro, quanti euro possedevo inizialmente?

 

 

 

48) Nel salvadanaio di un bambino ci sono k monetine da 50 centesimi, k+1 da 20, k+2 da 10, k+3 da 5,

per un totale di euro 6,50. Quanto vale k?

 

  OSSERVAZIONE:

    qui, se vuoi, puoi benissimo utilizzare nel ruolo di incognita il simbolo k già presente.

    Non è obbligatorio indicare un numero incognito sempre con x!

 

 

49) Per quale valore di m i due monomi   hanno il medesimo grado?  

 

 

50) Problema inventato da Christopher Clavius, 1538-1612:

L’accordo fra un nobiluomo e un domestico prevede un salario annuale di un mantello + 100 franchi.

Passati 7 mesi, però, un inconveniente fa sì che il domestico debba interrompere il lavoro.

Il padrone gli paga a questo punto il servizio prestato col mantello + 20 franchi.

Quanti franchi vale il mantello? 

51) Un turista vuole salire in cima ad una lunghissima scalinata che porta a una terrazza panoramica.

Dopo aver percorso i 2/3 dei gradini, si ferma per riposare.

Quindi percorre i 3/4 dei gradini che gli rimangono, e si ferma nuovamente.

A questo punto sale i 4/5 dei gradini ancora restanti e fa un’ultima piccola pausa.

Coraggio! Rimangono solamente 4 gradini! … Di quanti gradini in totale è composta la scalinata?

 

52) Fra gli iscritti a un circolo i 2/3 sono maschi, e fra questi maschi i 3/5 fa uso di alcoolici.

Fra le femmine, invece, solo la quarta parte beve alcoolici.

Se complessivamente 124 persone NON assumono alcoolici, quanti iscritti conta il circolo?

 

53) Dividere il numero 739 in 5 parti, tali che ciascuna (eccetto la prima)

      superi di un’unità il doppio della precedente.

 

54) Il mese scorso una coppia di giovani sposi, che vive col solo stipendio del marito, ha speso:

400 euro per l’affitto della casa, i 2/5 di quanto restava per il mangiare, e i 5/6 del rimanente

per le altre necessità (luce, acqua, gas, telefono, vestiario, svago).

Miracolosamente sono avanzati ancora 100 euro. A quanto ammonta lo stipendio percepito?

 

 

55) Determina x sapendo che la lunghezza del contorno della piscina

      è uguale ai 2/3 della lunghezza del contorno del terreno

      rettangolare, di lati 13 metri e 8 metri,

      all’interno del quale la piscina è stata costruita

 

      (troverai una frazione, o un numero con la virgola)

56) Le dimensioni del rettangolo di terreno raffigurato

      qui a sinistra misurano 15 m e 8 m, e la superficie

      occupata dal sentiero è la quarta parte della superficie restante.

      Quanto misura x?   

57) Sapendo che i perimetri

      dei due rettangoli piccoli in figura

      sono uno i 9/13 dell’altro,

      determina l’area del rettangolo grande.

58) Una catenella chiusa è lunga complessivamente cm 180.

      Se la si fa passare attorno a due paletti A e B distanti cm 80

      e la si tende in modo che l’angolo  sia di 90°,

      quanto misurerà il tratto AC?  

 

      (Per impostare l’equazione risolvente puoi utilizzare il Teorema di …)  

 

59) In un triangolo ABC l’angolo  è il triplo dell’angolo , mentre l’angolo  supera  di 33°.

Determina le misure dei tre angoli. (Ricorda che in ogni triangolo la somma degli angoli vale 180°)  

 

60) In un triangolo isoscele il lato obliquo supera la base di 2 m, e il perimetro è di m 58.

Trova lati obliqui e base.  

 

61) Trova i lati di un triangolo isoscele di perimetro 64 cm, nel quale il lato obliquo è i 5/6 della base.

 

62) Di un triangolo ABC, isoscele sulla base BC, si sa che  ed è noto il perimetro:

cm 52. Quanto misurano base e lato obliquo?   

 

63) In un rettangolo, il perimetro misura cm 78, mentre la somma fra i 5/6 della base e i 2/3 dell’altezza

      è cm 30. Trova le dimensioni del rettangolo.  

 

64) In un rettangolo, l’altezza supera di 2 cm la metà della base, e la metà dell’altezza è uguale alla

      terza parte della base. Quanto misura il perimetro?  

 

65) Trova la misura x del lato di un quadrato sapendo che, se questa misura venisse aumentata di 3 cm,

      l’area del quadrato aumenterebbe di 81

 

Altri problemi di argomento geometrico si trovano a pagina 219; altri ancora sul Volume 2

 

 

  MISTURE E CONCENTRAZIONI

 

66) In 80 kg di soluzione, il sale rappresenta il 4% del peso totale. Quanti kg di acqua distillata

devo aggiungere se voglio che il sale venga a costituire solamente il 2,5% del peso totale?

 

RISOLUZIONE GUIDATA

      Osserviamo, per cominciare, che nella soluzione iniziale sono presenti  kg di sale.

 

      Bene, ora io aggiungo x kg di acqua distillata; così il peso totale della soluzione diventa di  kg;

      se voglio che il sale presente (sempre gli stessi 3,2 kg) rappresenti il 2,5 % del peso totale,

      dovrà essere  da cui  

 

67) Un commerciante di vini disonesto ha mischiato una partita di vino ottimo con una di vino scadente,

ottenendo una mistura di 120 litri della quale il vino buono rappresenta il 50%. Quanti litri di vino

buono dovrebbe aggiungere a questa mistura, se volesse portare la percentuale di vino buono al 70%?

 

68) Se si ha a disposizione un liquido A contenente il 10% di candeggina e il 90% di acqua e un liquido B

contenente il 25% di candeggina e il 75% di acqua, quanti litri di A e quanti di B occorre mischiare

se si vogliono ottenere 10 litri di soluzione acquosa al 15% di candeggina? (Risultati non interi)

 

 

 

  VELOCITA’

      

69) Due veicoli partono dallo stesso punto procedendo in versi opposti, alle velocità di 7,5 e 12 km/h

      rispettivamente. Dopo quanti minuti la loro distanza sarà di 1200 metri?

 

      RISOLUZIONE GUIDATA

      Nel moto uniforme ( = a velocità costante):   

       

      Innanzitutto converrà portare tutti i dati in metri e in minuti.

       

      Indichiamo con t il numero di minuti che devono passare (meglio qui utilizzare il simbolo t,

      dall’iniziale di “tempo”, piuttosto che x). Dopo t minuti, i due veicoli avranno percorso rispettivamente

       metri e  metri. Allora l’equazione risolvente sarà   da cui  

 

70) Un treno merci parte da una stazione e marcia alla velocità di 60 km orari. 

Un secondo treno parte dalla stessa stazione dopo 15’ nella stessa direzione del primo,

viaggiando su di un binario parallelo, alla velocità di 85 km orari.

Dopo quanto tempo il secondo treno raggiunge il primo, e a quale distanza dalla stazione di partenza?

 

RISOLUZIONE GUIDATA

 

Diciamo che il sorpasso avverrà dopo t ore dalla partenza del 2° treno

(quindi, dopo  ore dalla partenza del 1° treno).

Al momento del sorpasso, il secondo treno avrà viaggiato per t ore,

alla sua velocità di 85 km all’ora, e avrà quindi percorso  km,

mentre il primo treno avrà viaggiato per  ore,

alla sua velocità di 60 km all’ora, e avrà quindi percorso  km.

Avremo dunque l’equazione risolvente  da cui  

  Pertanto il sorpasso avviene dopo … di ora ossia … minuti dalla partenza del secondo treno;

  la distanza dalla stazione di partenza è calcolabile facendo, indifferentemente,      …       oppure      …

 

71) Due treni partono simultaneamente, marciando su due binari paralleli,

il primo da una città A e il secondo, venendo incontro al primo, da una città B.

Le due città distano 120 km, il primo treno procede a 60 km all’ora e il secondo a 100 km all’ora.

Dopo quanto tempo i due treni si incontrano e a quali distanze dalle due città?

 

72) Due autobus si vengono incontro, partendo simultaneamente da due località distanti 385 km; entrambi    

viaggiano a velocità costante, ma uno di essi mantiene una velocità di 15 km/h minore rispetto all’altro.

Se ci mettono 2 h e 20’ ad incrociarsi, quali sono le due velocità?

 

73) Due autobus partono per una gita scolastica da una stessa località, ma uno di essi, per un imprevisto,

si avvia con 20 minuti di ritardo rispetto all’altro.

L’autista dell’autobus partito per primo viaggia alla velocità costante di 70 km/h,

mentre il secondo autobus, per recuperare il ritardo, procede a una velocità di 20 km/h più elevata.

Si domanda quanto tempo ci metterà l’autobus partito per secondo, a raggiungere il primo.

 

 

 

 

 

  NUMERI INTERI DISGREGATI IN CIFRE

 

      Per i problemi in questo riquadro occorre tener presente che, se un numero intero si scrive,

      poniamo, come , allora è uguale a . Ad esempio, .

 

74) Determina un intero di due cifre, sapendo che quella delle decine supera di 2 quella delle unità,

      e il numero stesso supera di 3 il sestuplo del valore della somma delle sue cifre.

 

RISOLUZIONE GUIDATA

 

 

 

75) In un intero di due cifre la cifra delle unità è il doppio di quella delle decine.

L’intero è uguale alla somma delle sue cifre, aumentata di 27. Di che intero si tratta?

 

 

76) Un intero è composto da 3 cifre consecutive crescenti. Determinalo, sapendo che se lo si scrive

      all’incontrario, il nuovo intero ottenuto supera di 9 unità i 4/3 dell’intero originario.

 

 

77) Trova un intero di due cifre sapendo che la cifra delle decine supera di 2 quella delle unità,

e che scrivendo il numero al rovescio, il nuovo valore è inferiore di 18 al valore iniziale.

 

 

 

 

 

 

  SEMPRE PIU’ DIFFICILE!!!

 

 

I problemi che seguono sono più “tosti”.

 

Se sei un duro lotterai a lungo

prima di “sbirciare”,

cliccando sulla freccia,

la correzione!!!

nelson.gif

In Inglese si usa il termine

“CHALLENGE”

(letteralmente: “sfida”)

per indicare

un problema o quesito

più arduo del solito

 

 

78) Una contadina si reca al mercato con il suo paniere di uova.

Un primo cliente le acquista la metà delle uova più mezzo uovo,

un secondo cliente la metà delle uova rimaste più mezzo uovo,

un terzo (e ultimo) cliente la metà delle uova rimaste più mezzo uovo.

Voilà! La contadina ha così venduto tutte le uova con cui era partita!

… Ma quante erano queste uova?

 

79) ð   Per riempire una piscina vengono aperti, contemporaneamente, tre rubinetti.

      Il primo rubinetto, se usato da solo, riempirebbe la piscina in 3 ore.

      Il secondo, da solo, ce la farebbe in 4 ore. E il terzo, da solo, ci metterebbe 12 ore.

      Ma visto che i rubinetti vengono adoperati insieme, in quanto tempo verrà riempita la piscina?

 

      (Indicazione: domandati quale frazione di piscina riempie, in 1 ora, ciascun rubinetto …)

 

80) Un rubinetto A scarica 1 volta e mezza l’acqua scaricata dal rubinetto B nel medesimo tempo.

Se aperti in simultanea, impiegherebbero 36 minuti a riempire la vasca.

E se si utilizzasse solo il rubinetto A, quanto tempo occorrerebbe?  

 

81) ð   E’ mezzogiorno, e le lancette dell’orologio sono sovrapposte.

      Fra quanti minuti torneranno di nuovo a sovrapporsi?

 

82) ð   Il tragitto di una gara sportiva è suddiviso in tre tappe. La prima tappa, uguale alla metà

      della distanza totale, è stata percorsa dal vincitore in bicicletta, alla velocità di 12 m al secondo.

      La seconda tappa, uguale a un terzo della distanza totale, è stata percorsa a piedi, alla velocità di

5 metri al secondo. E la tappa rimanente è stata percorsa a nuoto, alla velocità di 1 metro al secondo.

Sapendo che il tempo totale impiegato è stato di 1 ora e 50 minuti, si chiede:

di quanti chilometri è il tragitto complessivo?

 

83) ð   Quando un termometro in scala Celsius segna 0 gradi Celsius (0° C),

un termometro Fahrenheit segna 32 gradi Fahrenheit (32° F);

l’acqua bolle a 100° C e a 212° F.

C

F

 

 

0

32

 

 

100

212

 

 

 

a)  Trova la formula che lega la temperatura F su di un termometro Fahrenheit

     alla stessa temperatura C misurata da un termometro Celsius:   

 

b)  Rispondi ora a questa domanda: esiste una temperatura che è indicata con lo stesso numero

     tanto su di un termometro Celsius che su di un termometro Fahrenheit?

 

 

 

ALTRI PROBLEMI DI RISERVA, TUTTI CON CORREZIONE 

(le soluzioni sono a pagina 169, le correzioni a pagina 166-167)

 

 

84) Piero è un risparmiatore. A Gennaio mette da parte una certa somma; a partire da Febbraio, ogni mese

      riesce a risparmiare 50 euro in più rispetto al mese precedente. Se alla fine di Aprile i suoi risparmi

      dell’anno in corso ammontano a 2100 euro, quanto ha messo da parte ogni mese?

 

85) Il commerciante Paolo esce di casa con 200 euro, incassa alla fiera una certa somma di denaro,

      poi però  deve pagare una multa per la sosta del suo furgone in area vietata, perdendo così il 10%

      di quanto aveva nel portafogli. Rincasa quindi con 585 euro. Quanto aveva incassato alla fiera?

 

86) Carlo ha 10 anni più di suo fratello Dario, e fra 6 anni le due età saranno una il doppio dell’altra.

      Quanti anni ha Carlo attualmente?

 

87) Trova due interi sapendo che si tratta di due multipli consecutivi di 5 e che la differenza dei loro

      quadrati è 975.

 

88) Trova due numeri sapendo che è uguale a 21 sia la loro differenza, che la differenza dei loro quadrati

      (psst … in confidenza … non è che debbano per forza essere entrambi positivi!)

 

89) Anna ha 5 anni in meno rispetto a suo fratello Bruno.

      3 anni fa Anna aveva esattamente i 4/5 dell’età che aveva Bruno. Qual è l´età attuale dei due?

 

90) Una ditta vende due tipi di computer, uno più costoso, da 1000 euro, e uno più economico,

      il cui prezzo, rispetto all’altro, è il 25% in meno.

      Dopo la vendita di 22 macchine in totale, l’incasso complessivo è stato di euro 20000.

      Quanti computer di ciascun tipo sono stati venduti?

 

91) Trova due numeri sapendo che hanno per somma 50, mentre la differenza dei loro quadrati è 100.

 

92) Pierino è goloso dei grossi gelati di un certo banchetto, e pensa che se la sua paghetta settimanale

      fosse di 1 euro in più, riuscirebbe con essa a pagarsi 6 bei gelati. Ma alla fine Pierino, giudiziosamente,

      ricevuta la paghetta compra 2 gelati soltanto, compra anche una cassata, da mangiare in famiglia,

      che costa 4 euro in più rispetto al gelato, e avanza 5 euro e 50 centesimi.

      A quanti euro ammonta la paghetta? E quanto costa un gelato?

 

93) Tre amici posseggono in totale 400 euro, ma questi non sono suddivisi equamente.

      Mentre infatti Bruno risulta avere il triplo di Aldo, più ancora 32 euro, Carlo se avesse 6 euro in più

      avrebbe il doppio di Bruno. Quanto possiede ciascuno?

 

94) Un tragitto di 480 km viene suddiviso in 3 tappe, tali che ciascuna (a parte, ovviamente, la prima)

      è inferiore di 20 km al doppio della precedente. Quanti km misura ciascuna tappa?

 

95) La differenza fra i perimetri di due quadrati è di 16 cm, mentre la differenza delle aree è di 104 cm2.

      Quanto misura il lato di ciascun quadrato?

 

96) Se ho in tasca 36 monete, parte da 20 centesimi, le rimanenti da 50 centesimi, e il totale equivale

      a 12 euro, quante sono le monete da 20 centesimi e quante quelle da 50 centesimi?

 

97) Pierino, guardando la vetrina del pasticcere, riflette:

      vorrebbe comprare 8 piccole torte, ma gli manca 1 euro; se invece comprasse 6 crostate, avanzerebbe

      1 euro. Sapendo che una torta costa 1  in meno di una crostata, dimmi quanti euro ha in tasca Pierino.

 

98) Trova un intero di due cifre sapendo che la somma delle sue cifre è 9, e che se lo si scrive al rovescio

      il nuovo numero ottenuto supera di 45 quello iniziale. 

 

99) La differenza fra i tempi, nel percorrere una determinata distanza ai 40 km/h oppure ai 45 km/h,

      è di 10 minuti. Qual è la distanza in questione?

 

100) Ho aggiunto 5 litri di acqua a una soluzione di 10 litri contenente una certa percentuale di acido  

        cloridrico, ottenendo una diminuizione della concentrazione di questo, che si è ora ridotta all’1%.

        Sapresti risalire alla concentrazione originaria?

 

101) Carlo vuol andare a fare i compiti dalla compagna Patty, passando però prima

        dal Fornaio, distante da casa di Carlo 700 metri, per comprare due croissant

        da mangiare a merenda. In questo modo, farà due volte e mezza la strada

        che avrebbe fatto andando direttamente da Patty per la via più breve.

        Quanto distano la casa di Carlo e quella di Patty?

 

102) Un tale ha cambiato una corona in monete da 1/10 di corona e da 1/20 di corona; in totale, le monete

        che ha ricevuto sono state 17. Quante monete di ciascun tipo? (da “Elementi di Algebra” di Euléro)

 

RISOLUZIONI

 

 

84)

 

 

85)

 

 

 

86)

 

 

87)

 

 

 

 

88)

 

89)

 

90)

 

 

91)

 

92)

 

 

 

 

93)

 

94)

 

95)

 

 

 

96)

 

97)

 

 

98)

 

99)

 

Detta ora s la distanza richiesta,

avremo, ragionando in km, ore e km/h,

 

La distanza in questione è di  

100)

Detto x il peso dell’acido cloridrico nella

soluzione originaria, prima dell’aggiunta

dei 5 litri d’acqua, avremo:

 

Perciò la soluzione originaria conteneva

15/100 di litro di acido cloridrico,

e poiché tale soluzione era di 10 litri,

in essa la percentuale di acido era data da

 

Qui in fondo il valore cercato è stato determinato

più con calcoli diretti che con una equazione …

101)

Così:

 

da cui  

 

 

 

… oppure così:

 

 

 

da cui  

 

102)

 

 
ESEMPI DI PROBLEMINI IN LINGUA INGLESE, TROVATI SU INTERNET

 

          (basta digitare, su di un motore di ricerca, le parole chiave equation + word + problem

 word problems = problemi espressi a parole)

 

 

Terminologia matematica inglese, da  http://www.mathleague.com  (The Math League)

 

Word

Operation

Example
As an equation

sum

addition

The sum of my age and 10 equals 27

 

difference

subtraction

The difference between my age and my younger sister's age, who is 11 years old, is 5 years.

 

product

multiplication

The product of my age and 14 is 168

 

times

multiplication

Three times my age is 60

 

less than

subtraction

Seven less than my age equals 32

 

more than

addition

Eleven more than my age equals 43

 

 

NOTA    e  in quanto operazioni si leggono “plus” (pron. plàs) e “minus” (pron. mains) ma in quanto

              segni di numeri relativi vanno invece letti come “positive” e “negative”. Es.  “negative seven”.

              La moltiplicazione si legge“times” (es. 5 × 4 “five times four”), più raramente “multiplied by”.

 

 

 

Da http://www.themathpage.com (Lawrence Spector):

 

103)  A class of 50 students is divided into two groups; one group has eight less than the other;

         how many are in each group?

 

 

104)  Julie has $50, which is eight dollars more than twice what John has. How much has John?

 

105)  Divide $80 among three people so that the second will have twice as much as the first,

         and the third will have $5 less than the second.

 

106) There are b boys in the class. This is 3 more than 4 times the number of girls.

        How many girls are there?

 

107) A woman is now 30 years older than her son. 15 years ago, she was twice as old.  

        What are the present ages of the woman and her son?

 

108) A total of 925 tickets were sold for $5,925 (cinquemilanovecentoventicinque).                         

        If adult tickets cost $7.50, and children's tickets cost $3.00, how many tickets of each kind were sold?   

        ( Qui, ALL’ANGLOSASSONE, LA VIRGOLA FA DA SEPARATORE PER LE MIGLIAIA,

                                                                  IL PUNTO PER LA PARTE DECIMALE)

 

Da  http://www.stfx.ca/special/mathproblems/grade9.html (The Canadian School Math Page):

 

109) Flora had an average of 56% on her first 7 exams.

        What would she have to make on her eighth exam to obtain an average of 60% on 8 exams?

 

110) A classroom contained an equal number of boys and girls. Eight girls left to play hockey, leaving

        twice as many boys as girls in the classroom. What was the original number of students present?

 

Dal sito http://www.algebralab.org:

 

111) If 4 is subtracted from twice a number, the result is 10 less than the number. Find the number.

 

112) Karin’s mom runs a dairy farm.

        Last year Betty the cow gave 375 gallons less than twice the amount from Bessie the cow.

        Together, Betty and Bessie produced 1464 gallons of milk. How many gallons did each cow give?

 

113) Twice a number is added to the number and the answer is 90. Find the number.

 

114) Jose has a board that is 44 inches long. He wishes to cut it into two pieces so that one piece will be

        6 inches longer than the other. How long should the shorter piece be?

 

115) Paula received a paycheck of $585. This amount reflects her weekly earnings less 10% of her earnings

        for deductions. How much was she paid before deductions were taken out?

 

Dal sito http://www.analyzemath.com (Abdelkader Dendane)

 

116) At 9 am a car (A) began a journey from a point, traveling at 40 mph (miles per hour, miglia per ora).

        At 10 am another car (B) started traveling from the same point at 60 mph in the same direction as

        car A. At what time will car B pass car A? (am=antimeridiane, pm=pomeridiane, dopo mezzogiorno)

 

SOLUZIONI DEI PROBLEMI

 

1) ; capacità = 60 litri  2)  opp.  

3) ;  Mario possedeva inizialmente 37 euro e Vincenzo 15   4) 18, 18, 18, 14 pennarelli  

5) 25 euro   6) Costo pranzo in trattoria = 9 euro   7) Una bottiglia costa 5 euro, una torta 12,50 euro   8) 7 mesi   

9) 1 euro e 80   10) costo pasto scontato = 15 euro   11) 15 bottiglie di orzata   12) Tutte! La x non è la stessa …

13) ; ; Mario ora ha 19 anni

14) 42 anni e 14 anni    15) Fra 7 anni    16) Anna ha 15 anni, Barbara 12    17) 105, 108    18) 12, 18, 30

19) 8 conigli, 15 galline    20) Diofanto visse 84 anni    21) 25, 26    22) 15/2, 21/2    23) 512, 514, 516

24) Problema impossibile    25) 63, 70

26) Problema impossibile: nessuna quaterna di interi consecutivi può avere questa proprietà

27) Problema indeterminato: qualsiasi quaterna di interi consecutivi gode di questa proprietà

28) 48 kg, 36 kg, 27 kg    29) 7 risposte giuste e 11 sbagliate   

30) Le capacità sono: bottiglia, 3/4 di litro; bottiglione, 5/4 di litro (1 litro e ); damigiana, 120 litri

31) 32 monete da 50 lire e 28 da 100 lire   32) 13 anni e 44 anni    33) 16 etti di meringhe e 24 di bignole

34) Ha preso 98    35) 18 maschi, 7 femmine    36) La vincita è stata di 250 euro, e gli amici sono 6

37) Fra 13 anni    38) I quadrifogli sono 7    39) 100 spettatori minorenni    40) Ero andato al bar con 700 euro

41) Il testo del problema è ambiguo, perché non chiarisce se dopo il trasferimento il sacco che era

      inizialmente più pesante resta ancora il più pesante, oppure diventa il più leggero.

      Nel primo caso i due pesi iniziali sono 60 kg e 36 kg, nel secondo caso 54 kg e 42 kg

42)     43) , ,

                          , ;  eq. ris.:  ;

                           

44) 15 di ciascun modello     45) Il prezzo iniziale della giacca era di 210 euro     46) 8000 e 12000 euro

47) 35000.   da cui A=… e analogamente per B    48) k = 7    49)     50) Vale 92 franchi

51) 240 gradini    52) Gli iscritti al circolo sono 240    53) 23,  47,  95,  191,  383    54) 1400 euro

55) metri     56) m 1,6    57)     58) Pitagora: ;  AC = 82 cm   

59) 21°, 63°, 96°    60) Base = 18 m, lato obliquo = 20 m    61) Base = 24 cm, lato obliquo = 20 cm

62) Base = 12 cm, lato obliquo = 20 cm    63) Base = 24 cm, altezza = 15 cm

64) Base = 12 cm, altezza = 8 cm, perimetro = 40 cm   65)  ;  x = 12 cm

66) : devo aggiungere 48 kg di acqua distillata    67) Dovrebbe aggiungere 80 litri di vino buono

68)  6 litri e 2/3 di litro di A, 3 litri e 1/3 di litro di B

69)       

      Dopo t minuti, i due veicoli avranno percorso rispettivamente  metri e  metri.

      Allora l’equazione risolvente sarà   da cui  

70) ; pertanto il sorpasso avviene dopo 3/5 di ora ossia 36 minuti dalla partenza del 2° treno;

      la distanza in km dalla stazione di partenza è calcolabile facendo, indifferentemente,

       oppure . Perciò il 2° treno, quello che parte dopo ed è più veloce,

      raggiunge il più lento dopo aver viaggiato per 36 minuti, e a 51 km dalla stazione di partenza.

      NOTA: Si poteva anche ragionare più “alla buona” dicendo che, visto che le velocità sono rispettivamente

      di 85 e di 60 km/h, nel suo “inseguimento” il secondo treno recupera ogni ora 25 km sull’altro;

      siccome i km di distacco da recuperare sono 15 (nei 15 minuti = 1/4 di ora in cui ha viaggiato da solo,

      il primo treno ha percorso , basterà fare  di ora.

71) Dopo  d’ora, a 45 km dalla città A e a 75 km da B    72) 90 e 75 km/h (2 h 20’= h 7/3)    73) 1 h 10’ 

74) . L’intero è 75    75) 36    76) 567    

77) L’equazione risolvente è indeterminata. Sono soluzioni del problema tutti i numeri di due cifre,

      nei quali la cifra delle decine supera di 2 quella delle unità, ossia: 97, 86, 75, 64, 53, 42, 31, 20.

78) Le uova erano 7   79) ;  1 ora e     80) 1 ora

81) Fra 720/11 di minuto,  ossia  1 ora + 60/11 di minuto,  oppure  1 h, 5 minuti e 5/11 di minuto.

82) 24 km   83)  a)   b)    84) , ecc.   85)    86)  

87)     88)    89)   90)   91)  

92)   93)   94)   95)   

96)   97)   98)   99) 60 km  100) 1,5 %  101) 400 m   102) 3 e 14   103) 29, 21  

104) $21  105) 17, 34, 29  106)  107) 75, 45  108) 700, 225  109) 88%  110) 32  111)  (“negative six”)

112) 851, 613 gallons    113) 30    114) 19 inches    115) $650    116) Car B passes car A at 12 am